S-Store: Streaming Meets Transaction Processing
By Meehan et al.

CS590-BDS
Thamir Qadah

Some slides contains material from the original authors’ slides.

Project Website: http://sstore.cs.brown.edu/
Introduction

● **What is S-Store?**
 ○ A data processing system that combines stream processing and transaction processing.
 ○ Extends H-Store to support streaming semantics

● **Why is it useful?**
 ○ Traditional stream processing system: No or limited support for transactional guarantees
 ○ Traditional OLTP systems: No support for data-driven processing
The Era of IoT
Traditional Extract-Transform-Load (ETL)

Extract
- **Staging**
 - Flat Files

Transform
- Data Cleaning
- Intermediate Results
- Data Normalization
- Intermediate Results

Load
- OLAP/Storage
 - Data Warehouse
An Example: TPC-DI

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 1. Ingest raw data
 2. ETL transform
 3. Update warehouse

http://www.tpc.org/tpcdi/
Poess et al, VLDB 2014
An Example: TPC-DI

- Brokerage firm
- 6 heterogeneous sources

- 3 key parts:
 1. Ingest raw data

✓ Data collected into flat files
✓ Heterogeneous data types
✓ Incremental update from an OLTP source, once a day
An Example: TPC-DI

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 1. Ingest raw data
 2. ETL transform
 3. Update warehouse

- ✔ Storage for intermediate results
- ✔ Transactional state management
An Example: TPC-DI

- Brokerage firm
- 6 heterogeneous sources
- 3 key parts:
 1. Ingest raw data
 2. ETL transform
 3. Update warehouse

✓ Bulk loading
Streaming Data Ingestion

- In modern apps such as IoT:
 - real-time streams of data from a large number of sources
 - majority of these sources report in the form of time-series
 - data currency & low latency is key for real-time decision making & control

✓ Need a stream-based ingestion architecture
✓ Must pay attention to time-series data type and operations (both during ingestion & analytics)
An Architecture for Streaming Data Ingestion

DATA COLLECTION

STREAMING ETL
- ETL LIBRARY
 - Data Cleaning
 - Data Transformer
 - Data Integration
 - Data Router
 - Data Staging
 - Data Caching
- SUPPORT
 - Transaction Mgr
 - Local Storage
 - Scheduler
 - Recovery Mgr
 - Cache Mgr

OLAP BACKEND
- QUERY PROCESSOR
- OLAP ENGINE
 - ΔDW
 - DATA WAREHOUSE
 - Globally Consistent Data
Data Ingestion for the Connected World
John Meehan, Cansu Aslantas, Jiang Du, Nesime Tatbul, Stan Zdonik
CIDR 2017, Jan 2017
Smart Order Routing (SOR) Application

- Same stocks can be traded at different trading venues independently
- A SOR systems takes the client order, and routes it to the venue what provides the most benefit the client.
FIX trading Example

Check and Debit Order Amount

Buying Power

Update Order

Trading Venue Selection

Customer Orders

Exchange A

Exchange B

OLTP Transactions

Exchange A

Exchange B
FIX trading Example

FIX Message

Check and Debit Order Amount

Buying Power

Update Order

Trading Venue Selection

Customer Orders

OLTP Transactions

Exchange A

Exchange B
FIX trading Example

- FIX Message
- Check and Debit Order Amount
- Buying Power
- Update Order
- Customer Orders
- Trading Venue Selection
- Ordering Needed
- Exchange A
- Exchange B
- OLTP Transactions

Exchange A

Exchange B
FIX trading Example

- Fix Message
- Check and Debit Order Amount
- Buying Power
- Update Order
- Exchange A
- Exchange B

Isolation Needed

Trading Venue Selection

Customer Orders

OLTP Transactions

Exchange A

Exchange B
The Computational Model

● Guarantees:
 ○ ACID guarantees for OLTP and Streaming
 ○ Ordered Execution guarantees
 ▷ Executions follow the dataflow graph for streaming transactions
 ○ Exactly once processing guarantees for streams
 ▷ No loss or duplication

● 3 kinds of states:
 ○ Public tables
 ○ Windows
 ○ Streams

● 2 kinds of transactions:
 ○ OLTP transactions: can only access public tables
 ○ Streaming transactions: can access all kinds of state
Data and Processing Models

- A stream is an **ordered** collection of tuples.
- Each tuple is associated with a batch-id (e.g. timestamp) that specifies the simultaneity and ordering.
- Streaming transactions operates on non-overlapping **atomic batches** of tuples.
- An atomic batch is a finite contiguous subsequence of a stream.
 - External to a streaming transaction.
- A window is finite contiguous subsequence of a stream.
 - Internal to a streaming transaction.
 - Have a slide parameter => (sliding window).
 - If slide == window size => (tumbling window).
- Data-driven execution represented as a **dataflow** (DAG) with nodes representing streaming transactions and edges represent the flow of data among nodes.
Abstract Example

\[T_1(s_1, w_1) \]

\[T_2(s_1) \]

Definition

Border Transaction

Interior Transaction
Abstract Example

\[T_1(s_1, w_1) \]

\[T_2(s_1) \]

Transaction Execution
Abstract Example

Definition

Execution

State

Stream s_1
Window w_1
Stream s_2
Table for s_3
Correct Execution

- A dataflow graph is executed in rounds of atomic batches.
- Unlike traditional ACID, the execution is constrained by:
 - DAG order constraint
 - Stream order constraint
- In hybrid workloads, an OLTP transaction $T_{i,j}(p_i)$ can be interleave anywhere in the schedule.
- Nested transactions can only commit if all of its sub-transactions commit.
Fault Tolerance

- S-Store must be able to recover its state.
- Exactly once processing guarantees is limited to internal state only
- **Strong recovery:**
 - Uses command-log for committed transactions
 - Replay commands to restore states
 - Limitation: cannot guarantee same results if non-determinism exist in transaction logic
- **Weak Recovery:**
 - Perform command logging for border transactions only.
 - Assumes the ability to replay input data streams.
S-Store Architecture

Figure 4: S-Store Architecture
Stream Implementation

Stream 1

| TS | A1 | A2 |

$T_1(s_1)$

Stream 2

| TS | A3 | A4 |
Stream Implementation

Stream 1

<table>
<thead>
<tr>
<th>TS</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Stream 2

<table>
<thead>
<tr>
<th>TS</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
</table>

$T_1(s_1)$

Batch $s_1.b_1$ is ready
Stream Implementation

Stream 1

<table>
<thead>
<tr>
<th>TS</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Stream 2

| TS | A3 | A4 |

$\text{T}_1(s_1)$

$\text{T}_{1,1}(s_1.b_1)$

$\text{T}_{1,1}$ is scheduled
Stream Implementation

<table>
<thead>
<tr>
<th>Stream 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>A1</td>
<td>A2</td>
</tr>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stream 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>A3</td>
<td>A4</td>
</tr>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[T_{1,1}(s_1.b_1) \]

\[T_{1,2}(s_1.b_1) \]

\(s_1.b_2 \) is ready, \(T_{1,2} \) is scheduled, \(T_{1,1} \) produces output
Stream Implementation

Stream 1

<table>
<thead>
<tr>
<th>TS</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Stream 2

<table>
<thead>
<tr>
<th>TS</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

s_1, b_2 is ready, $T_{1,2}$ is scheduled, $T_{1,1}$ commits
Stream Implementation

Stream 1

<table>
<thead>
<tr>
<th>TS</th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
</table>

$T_1(s_1)$

$T_{1,1}(s_1.b_1)$

$T_{1,2}(s_1.b_1)$

Stream 2

<table>
<thead>
<tr>
<th>TS</th>
<th>A3</th>
<th>A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

$T_{1,2}$ commits
Experiments

- Single core deployment for data access
- Single core client
- Batch size = 1 tuple
- System comparison used leaderboard benchmark
- Microbenchmarks were used to evaluate triggers and recovery mechanisms
Figure 5: Leaderboard Maintenance Benchmark
<table>
<thead>
<tr>
<th>System</th>
<th>ACID</th>
<th>Order</th>
<th>Exactly-Once</th>
<th>Max Tput (batches/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Store (async)</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>5300</td>
</tr>
<tr>
<td>H-Store (sync)</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>210</td>
</tr>
<tr>
<td>Esper+ VoltDB</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>570</td>
</tr>
<tr>
<td>Storm+ VoltDB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>600</td>
</tr>
<tr>
<td>S-Store</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2200</td>
</tr>
</tbody>
</table>

Table 1: Guarantees vs Max Tput (Leaderboard Maintenance)
(a) EE Trigger Micro-Benchmark
Figure 6: Execution Engine Triggers

(b) EE Trigger Result
(a) PE Trigger Micro-Benchmark
Figure 7: Partition Engine Triggers

(b) PE Trigger Result

Max Throughput (batches/sec)

Number of PE Triggers
Logging becomes a bottleneck

(a) Logging

Max Throughput (batches/sec)

Number of SPs in Dataflow Graph

Weak Recovery
Strong Recovery
Strong recovery requires communication with recovery manager for each transaction redone from the log.
Summary

- Introduces transactional semantics for stream processing
- Introduces push-based for transaction processing
- Enables more efficient processing for emerging applications
- Unified computational model for OLTP and streaming transactions
- Strong Recovery and Weak Recovery
Research Question

● How to support OLAP queries that read from multiple tables in S-Store?
 ○ OLTP+OLAP+Transactional Streaming

● What is the programming model that is used for programming the dataflow graphs?

● Why not using something like LINQ instead of Java+SQL?
Thanks You