
L-Store Concurrency Control: QueCC
Slides are adopted from Qadah, Sadoghi

 QueCC - A Queue-Oriented, Control-Free Concurrency Architecture, ACM Middleware 2018

1

Mohammad Sadoghi
Exploratory Systems Lab
Department of Computer Science

ECS 165A – Winter 2021

Hardware Trends

2

HPE Superdome Server
144 physical cores

6TB of RAM

*Image source: https://www.hpe.com/us/en/servers/superdome.html

Large core counts Large main-memory

3

Popularity of Key-value Stores

• No multi-statement
transactions

• Weak consistency

• Weak isolation

4

High-Contention Workloads

High number of
contented operationsChallenge ???

5

State-of-the-Art Concurrency
Control Protocols

• Optimized for multi-core
hardware and main-
memory databases

• Non-deterministic

CC Class Year

SILO Optimistic
CC SOSP ‘13

TICTOC Timestamp
Ordering SIGMOD ‘16

FOEDUS-
MOCC

Optimistic
CC VLDB ‘16

ERMIA MVCC SIGMOD ‘16

Cicada MVCC SIGMOD ‘17

Transaction Processing on Modern Hardware, M. Sadoghi and S. Blanas

6

Performance Under High-Contention

Optimize-for-multi-core concurrency control techniques suffer
under high-contention due to increasing abort rate

7

Performance Under High-Contention

Under high-contention: Non-deterministic aborts
dominates

8

Performance Under High-Contention

Under high-contention: Non-deterministic aborts
dominates

9

Client Transactions a

b

each color presents a
transaction

Worker
Thread #2

Worker
Thread #1

2PL - NoWait

Abort Count: 0

c

d

w1(b)

r1(a)

r2(a)

w2(b)

r3(c)

w3(b)

r4(d)

w4(b)

10

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 0

c

d

r3(c)

w3(b)

r4(d)

w4(b)

r2(a)

w2(b)

Worker
Thread #1 w1(b)

r1(a)

11

Client Transactions a

b

Worker
Thread #2

Worker
Thread #1

2PL - NoWait

Abort Count: 0

c

d

w1(b)

r1(a)

r2(a)

w2(b)

r3(c)

w3(b)

r4(d)

w4(b)

12

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 0

c

d
r2(a)

w2(b)

r3(c)

w3(b)

r4(d)

w4(b)

Worker
Thread #1 w1(b)

r1(a)

13

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 0

c

d
r2(a)

w2(b)

r3(c)

w3(b)

r4(d)

w4(b)

Worker
Thread #1 w1(b)

r1(a)

conflict!

14

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 0

c

d
r2(a)

w2(b)

Worker
Thread #1 w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Abort transaction (to avoid potential deadlocks)

15

Client Transactions a

b

2PL - NoWait

Abort Count: 1

c

d

Worker
Thread #1

w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Worker
Thread #2 r2(a)

w2(b)

16

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 1

c

d
r2(a)

w2(b)

Worker
Thread #1

w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

17

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 1

c

d
r2(a)

w2(b)

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

18

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 1

c

d
r2(a)

w2(b)

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

conflict!

19

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 1

c

d
r2(a)

w2(b)

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

Abort transaction (to avoid potential deadlocks)

20

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 2

c

d
r2(a)

w2(b)

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

21

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 2

c

d
r2(a)

w2(b)

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

22

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 2

c

d
r2(a)

w2(b)

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

23

r2(a)

w2(b)

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 2

c

d

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

24

r2(a)

w2(b)

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 2

c

d

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b) conflict!

25

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 2

c

d

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

r2(a)

w2(b)

Abort transaction (to avoid potential deadlocks)

26

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 3

c

d

r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

Committed Transactions

r2(a)

w2(b)

27

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 3

c

d
r4(d)

w4(b)

w1(b)

r1(a)

r3(c)

w3(b)

Committed Transactions

r2(a)

w2(b)

28

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 3

c

d

w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Committed Transactions

r2(a)

w2(b)

29

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 3

c

d

w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

conflict!

Committed Transactions

r2(a)

w2(b)

30

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 3

c

d

w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Abort transaction (to avoid potential deadlocks) Committed Transactions

r2(a)

w2(b)

31

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 4

c

d

w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Committed Transactions

r2(a)

w2(b)

32

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 4

c

d
w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Committed Transactions

r2(a)

w2(b)

33

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 4

c

d
w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Committed Transactions

r2(a)

w2(b)

34

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 4

c

d
w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Committed Transactions

r2(a)

w2(b)

35

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 4

c

d
w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Committed Transactions

r2(a)

w2(b)

36

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 4

c

d
w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b) conflict!

Committed Transactions

r2(a)

w2(b)

37

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 4

c

d
w1(b)

r1(a)

r3(c)

w3(b)

r4(d)

w4(b)

Abort transaction (to avoid potential deadlocks) Committed Transactions

r2(a)

w2(b)

38

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 5

c

d

w1(b)

r1(a)

r4(d)

w4(b)

Committed Transactions

r3(c)

w3(b)

r2(a)

w2(b)

39

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 5

c

d

w1(b)

r1(a)

r4(d)

w4(b)

Committed Transactions

r3(c)

w3(b)

r2(a)

w2(b)

Committed Transactions

40

Worker
Thread #1

Client Transactions a

b

Worker
Thread #2

2PL - NoWait

Abort Count: 5

c

d

w1(b)

r1(a)

r3(c)

w3(b)

r2(a)

w2(b)

r4(d)

w4(b)

๏ Eventually transactions commit in some serial order!
๏ Many aborts due to high contention on record b
๏ Non-determinism in CC cause these aborts
๏ Wasted work

Key Insights

• Many aborts due to high contention

• Non-determinism in CC cause these aborts

41

• Can we do better?

• Is it possible to eliminate non-deterministic
concurrency control from transaction
execution?

42

Deterministic Transaction
Execution

• H-Store [Kallman et al. ’08]

• Designed and optimized for horizontal scalability, multi-core
hardware and in-memory databases

• Stored procedure transaction model

• Static partitioning of database

• Assigns a single core to each partition

• Execute transaction serially without concurrency control within
each partition

43

Client Transactions a

b

Worker
Thread #2

Worker
Thread #1

H-Store

Abort Count: 0

c

d

w1(b)

r1(a)

r2(d)

w2(c)

r3(a)

w3(b)

r4(c)

w4(d)
P1

P2

P1 is assigned to
Worker Thread #1

Single-partition
transactions

P2 is assigned to
Worker Thread #2

44

Client Transactions a

b

Worker
Thread #2

Worker
Thread #1

H-Store

Abort Count: 0

c

d

w1(b)

r1(a)

r2(d)

w2(c)

r3(a)

w3(b)

r4(c)

w4(d)
P1

P2

Committed Transactions

Committed Transactions

45

Client Transactions a

b

Worker
Thread #2

Worker
Thread #1

H-Store

Abort Count: 0

c

d

r3(a)

w3(b)

r4(c)

w4(d)
P1

P2

w1(b)

r1(a)

r2(d)

w2(c)

46

Client Transactions a

b

Worker
Thread #2

Worker
Thread #1

H-Store

Abort Count: 0

c

d

r3(a)

w3(b)

r4(c)

w4(d)

P1

P2

Committed Transactions

w1(b)

r1(a)

r2(d)

w2(c)

Committed Transactions

47

Client Transactions a

b

Worker
Thread #2

Worker
Thread #1

H-Store

Abort Count: 0

c

d

w1(b)

r1(a)

r2(d)

w2(c)

r3(a)

w3(b)

r4(c)

w4(d)

P1

P2

48

Client Transactions a

b

Worker
Thread #2

Worker
Thread #1

H-Store

Abort Count: 0

c

d

P1

P2

✓ Deterministic Execution
✓ No aborts because of CC
✓ Minimal coordination among threads

๏ Performs well only when transactions are single-partitioned

Committed Transactions

w1(b)

r1(a)

r2(d)

w2(c)

r3(a)

w3(b)

r4(c)

w4(d)

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

H-Store is sensitive to the percentage of multi-partition transactions
in the workload

Can We Do Better?

50

Our motivations are

• Efficiently exploits multi-core and large main-memory systems

• Provide serializable multi-statement transactions for key-value stores

• Scales well under high-contention workloads

Desired Properties

• Concurrent execution over shared data

• Not limited to partitionable workloads

• Without any concurrency controls

51

Is it possible to have concurrent execution over shared
data without having any concurrency controls?

Introducing: QueCC
Queue-Oriented, Control-Free, Concurrency Architecture

A two parallel & independent phases of priority-driven planning & execution

Phase 1: Deterministic priority-based planning of transaction operations in parallel

➡ Plans take the form of Prioritized Execution Queues
➡ Execution Queues inherits predetermined priority of its planner
➡ Results in a deterministic plan of execution

Phase 2: Priority driven execution of plans in parallel

➡ Satisfies the Execution Priority Invariance
“For each record (or a queue), operations that belong to higher priority queues

(created by a higher priority planner) must always be executed before executing any
lower priority operations.”

52

53

QueCC Architecture

Priority-based Parallel Planning Phase

Batching Client
Transactions

54

QueCC Architecture

Priority-based Parallel Planning Phase

Batching Client
Transactions

Planning Threads
(Pre-determined Priority)

High Priority
Queues

Low Priority
Queues

Index

Main Memory
DB Storage

55

QueCC Architecture

Priority-based Parallel Planning Phase

Execution
Queues

Batching Client
Transactions

Planning Threads
(Pre-determined Priority)

High Priority
Queues

Low Priority
Queues

Index

Main Memory
DB Storage

Execution Threads

Execution
Queues

Batching Client
Transactions

Planning Threads
(Pre-determined Priority)

High Priority
Queues

Low Priority
Queues

Index

Main Memory
DB Storage

Queue-oriented Parallel Execution Phase

QueCC Architecture

56

57

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Priority Groups

High-priority
Queues

Low-priority
Queues

w1(b)

r1(a)

r2(a)

w2(b)

r3(c)

w3(b)

r4(d)

w4(b)

Planning
Thread #2

Planning
Thread #1

Committed Transactions

58

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Planning
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Planning
Thread #1 w1(b)

r1(a)

r2(a)

w2(b)

r3(c)

w3(b)

r4(d)

w4(b)

Committed Transactions

59

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Planning
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Planning
Thread #1

w1(b)r1(a)

r2(a)

w2(b) r3(c)w3(b)
r4(d)

w4(b)

Committed Transactions

60

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Planning
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Planning
Thread #1

w1(b)r1(a)
r2(a)

w2(b)

r3(c)w3(b)

r4(d)

w4(b)

Committed Transactions

61

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Planning
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Planning
Thread #1

w1(b)r1(a)

r2(a) w2(b)

r3(c)w3(b) r4(d)

w4(b)

Prioritized Execution
Queues

Committed Transactions

62

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Execution
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Execution
Thread #1

w1(b)r1(a)

r2(a) w2(b)

r3(c)w3(b) r4(d)

w4(b)

Committed Transactions

63

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Execution
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Execution
Thread #1

w1(b)

r1(a)

r2(a)

w2(b)

r3(c)w3(b) r4(d)

w4(b)

Execution Priority
Invariance

Committed Transactions

64

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Execution
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Execution
Thread #1

r3(c)w3(b) r4(d)

w4(b)

w1(b)

r1(a)

r2(a)

w2(b)Execution Priority
Invariance

Committed Transactions

65

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Execution
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Execution
Thread #1 r3(c)

w3(b)

r4(d)

w4(b)

w1(b)

r1(a)

r2(a)

w2(b)Execution Priority
Invariance

Committed Transactions

66

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Execution
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Execution
Thread #1

r4(d)

w4(b)

w1(b)

r1(a)

r2(a)

w2(b)

r3(c)

w3(b)

Committed Transactions

67

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Execution
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Execution
Thread #1 r4(d)

w4(b)

w1(b)

r1(a)

r2(a)

w2(b)

r3(c)

w3(b)

Committed Transactions

Committed Transactions

68

a

b

Client Transactions

QueCC Abort Count: 0

c

d

Execution
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Execution
Thread #1

w1(b)

r1(a)

r2(a)

w2(b)

r3(c)

w3(b)

r4(d)

w4(b)

69

a

b

QueCC Abort Count: 0

Committed Transactions

c

d

Execution
Thread #2

Priority Groups

High-priority
Queues

Low-priority
Queues

Execution
Thread #1

w1(b)

r1(a)

r2(a)

w2(b)

r3(c)

w3(b)

r4(d)

w4(b)

✓ Deterministic Execution
✓ No aborts because of CC
✓ Minimal coordination among

threads
✓ Not sensitive to multi-partition

transactions
✓ Exploits Intra-transaction

parallelism

Application Layer / Testbed (YCSB, SYCSB, TPC-C Benchmarks)

Crypto Toolkit

Enable/Disable Secure Transactions

Block Creator

(Distributed Ledger)

Concurrency Control Protocols

(2PL, QueCC, 2VCC, DORA, MVCC, Timestamp,

H-Store, NoWait, Silo, Foedus, MOCC, TicToc, Cicada)
Consensus Protocols (GeoBFT, PoE, RCC, Delayed

Replication, ByShard, RingBFT,

Zyzzyva, Bitcoin-NG, PoW, PBFT, RBFT)

Storage Layer: Lineage-based Storage Architecture

Indexes
Data

Transaction

 Manager

Execution Threads

Message/IO Queues

Logging Commit Protocols:

(Q-Store, 2PC, 3PC, Calvin, EasyCommit)

ResilientDB Blockchain Fabric

70

https://github.com/resilientdb/
https://resilientdb.com/

Fault-tolerant Distributed Transactions on Blockchain., S. Gupta, J. Hellings, M. Sadoghi

https://github.com/resilientdb/
https://resilientdb.com/

Evaluation Environment

71

Hardware

Microsoft Azure instance with 32 core
CPU: Intel Xeon E5-2698B v3
32KB L1 data an instruction caches
256KB L2 cache
40MB L3 cache

RAM: 448GB

Workload YCSB: 1 table,10 operations, 50% RMW, Zipfian distribution
TPCC: 9 tables, Payment and NewOrder, 1 Warehouse

Software
Operating System: Ubuntu LTS 16.04.3
Compiler: GCC with –O3 compiler optimizations

72

Effect of Varying Contention
• 5 write and 5 read operation per transaction
• 32 worker threads

Workload contention resiliency
Cache locality under high-contention

3.3x

73

Effect of Varying Worker Threads
• 5 write and 5 read operation per transaction
• Zipfian theta = 0.99

Avoiding thread coordination & eliminating all execution-induced
aborts

3x

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

74

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

75

QueCC is not sensitive to multi-partitioning

4.3x at 1% Two orders of
Magnitude

76

TPC-C Results
1 Warehouse (highly contended workload)

50% Payment + 50% NewOrder transaction mix

QueCC can achieve up to 3x better performance on high-contention
TPC-C workloads

QueCC Conclusions

✓ Efficient, parallel and deterministic in-memory transaction processing

✓ Eliminates almost all aborts by resolving transaction conflicts a priori

✓ Works extremely well under high-contention workloads

77

What’s Next: Q-Store

Partitioned
on Distributed

Cluster

Q-Store

Execution
Queues

QueCC

Multi-core
Single-node

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020

What’s Next: Q-Store

79

Batching Client
Transactions

Plan Local and Remote
Execution Queues

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020

What’s Next: Q-Store

80

Batching Client
Transactions

Plan Local and Remote
Execution Queues

Deliver Remote
Execution Queues

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020

What’s Next: Q-Store

81

Batching Client
Transactions

Plan Local and Remote
Execution Queues

Deliver Remote
Execution Queues

Execute
Queues

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020

82

What’s Next: Q-Store

Partitioned
on Distributed

Cluster

Q-Store

Execution
Queues

QueCC

Multi-core
Single-node

✓ Parallel and distributed

✓ Queue-oriented execution
and communication

✓ Minimal coordination among
nodes and threads

Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and Communication., T. Qadah, S. Gupta, M. Sadoghi, EDBT 2020

83

What’s Next: QBFT

Partitioned
on Distributed

Cluster

Q-Store

Execution
Queues

QueCC

Multi-core
Single-node

Partitioned &
Replicated

QBFT

84

What’s Next: QBFT

Partitioned &
Replicated

QBFT

✓ Queue-oriented
Byzantine Fault-
Tolerance

✓ Resilient planning
followed by resilient
execution

