
Milestone 1: Single-threaded,
In-memory L-Store
ECS165A - WQ2021

Sean Carnahan, Reese Lam, Gabriel Vazquez,
Quang-Long Tran, Aly Kapasi

Introduction

- Designed a Single-Thread In-Memory
L-Store Database

- Columnar Database containing Pages as
columns

- Uses Base and Tail Pages to store and
update data

- Page Ranges contain record ranges of
the column

- Base Pages are read-optimized while the
Tail Pages are write-optimized

- RHash Implementation for Indexing

create_table
Creates an instance of a table, appends to the db’s list of tables,

returns the table

drop_table
Searches the table list and removes the specified table

get_table
Returns the table from the list

Database

Table: Architecture
Page Directory Page Range Physical Pages

Page Range 1

Page Range 2

Base Page 1 (set of physical
pages)

Base Page 2 (set of
physical pages)

Page 1
…
Page 10

Uses the RID of each record as
a key that maps to the
corresponding physical
location of that record

Each Page Range has a set of
Base Pages and Tail Pages

associated with it. The number
of Base Pages per Page

Ranges is determined by the
number of Pages per Base

Page getting as close to
MAX_PAGE_RANGE_SIZE

without going over

A set of Physical Pages is
created for each Base Page or
Tail Page. A Page is created for

each column in the table

Table: Metadata

- RID: 9 digit record ID

- Timestamp: marks the time of entry
- Schema encoding: integer indicating updates

- Indirection: points to the latest update

1 23 45 6789
locType locPRIndex locBPIndex locPhyPageIndex

0 1 2
unchanged updated deleted

index Byte Array

[0,3] b'\x00\x00\x00\x00'

[4,7] b'\x00\x00\x00\x00'

[8,11] b'\x00\x00\x00\x0a'

Physical Page

write(self, value)

replaceRecord(self, value)

Compress:
integer → Hex → Byte

Each Page is 4000 bytes and can store 1000 records. Each integer record is first compressed into
Hexadecimal and then inserted into the ByteArray at 4 bytes per record.

getRecord(self, value)

Decompress:
Bytes → Hex → Integer

Index: An RHash Implementation

15

12

1

20

99

42

key20rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

key15

key12

key99

key42

NULL

Index: An RHash Implementation

15

12

1

20

99

42

key20rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

key15

key12

key99

key42

NULL

min
Seed

median
Seed

max
Seed

Query: Methods

insert(self, *columns)

update(self, key, columns)

delete(self, key)

- Inserts a new record into the base pages with inputted data
- Generates metadata such as timestamp, RID, schema encoding, and indirection for the

new record

- Creates new records in the tail pages with their indirections pointing to the keyed records
- Changes the keyed records’ indirection values to point to the new records

- Creates new records with blank data in the tail pages with their indirections pointing to
the keyed record

- Removes the RIDs of the deleted records from the table index

Query: Methods

select(self, key, column, query_columns)

sum(self, start_range, end_range, aggregate_column_index)

- Finds the keyed records through the inputted column
- Returns a list of Record Objects with the requested data based on the inputted bit array

- Searches for the RIDs between the specified range
- Returns the sum of the requested values between the specified range

Query: Runtimes

Insert Update

Select Aggregate Delete

0.290433s 9.933973s 0.048569s

0.543902s 0.919173s

Below are the fastest execution times in seconds for the _main_.py file using 10,000 records:

Conclusion

Some aspects of the project that we would have

liked to improve:

- Decrease run-time by optimizing key

methods

- Linked List structure for Base and Tail

pages

- Creating more seeds for the RHash Index

- Using bitwise methods and operations to

generate RID

Source:
https://www.elegantthemes.com/blog/tips-tricks/
10-effective-website-improvements-that-take-10-
minutes-or-less-to-do

Questions

