
Milestone 2: Single-threaded,
Durable L-Store
ECS165A - WQ2021

Sean Carnahan, Reese Lam, Gabriel Vazquez,
Quang-Long Tran, Aly Kapasi

Agenda

Buffer Pool Merge Index

Buffer Pool: In-Memory Page Ranges

pageRange1 pageRange2 pageRange3

Disk Buffer Pool

read_from_disk()

write_to_disk()

Capacity: 3 page ranges

Evicts the least frequently used page range

The Pickle Python Library is
used to serialize and deserialize
python objects.

Pickling an object is the
process of converting it into a
bytestream. We can then
store it within a file.

Unpickling an object
converts the bytestream
back into a python
object.

Buffer Pool: Pickling

pageRange
10100101010
01000111101
01010101010
101

pickle.load(file)

pickle.dump(object)

object

file.p

Buffer Pool: LFU Eviction Policy

The bufferpool evicts the Least Frequently Used page range by:
1. Checking the number of requests which is quickly done through a sorted list
2. Skipping pinned page ranges; pin ≠ 0 signifies that they are in use
3. Writing the page range to disk if its dirty bit tracker equals true

requestsPerPR: 2
pin: 0
dirtyBitTracker: True

requestsPerPR: 5
pin: 1
dirtyBitTracker: False

requestsPerPR: 8
pin: 0
dirtyBitTracker: False

pageRange1 pageRange2 pageRange3

, ,

Agenda

Buffer Pool Merge Index

Buffer Pool

Merge Thread Object

Merge: Thread Object & Buffer Pool

● Created with database
● Starts when database is opened
● Checks if there are PageRanges from the buffer pool to perform a merge on
● Calls merge and resets the number of unmerged tail records for the PageRange merged
● Terminates when the database is closed

● Maintains a list of format [tableName, PR_index_rel_to_table, tailRecordsSinceLastMerge]
● Sorts the table based on the count of tailRecordsSinceLastMerge
● Returns the list with most unmerged tail records to the merge thread

metadata + new data

metadata + data

Merge: Method

Original Merged

Base Page Consolidated Base Page

Tail Page Same Tail Page

metadata + new data

metadata + newer data

metadata + data

Page Copy

Not changed

Page Range

Consolidates the data of tail pages into the necessary base pages for the entire given PageRange by:
1. Checking every 5 seconds if there are more than 100 changed records
2. Creating a copy of base page(s) but referencing the indirection column to allow for concurrency
3. Changing the data of the new base page instance(s) to the new data in tail record(s)
4. Replacing the original, unmerged base page with the consolidated base page

When closing the DB, there are metadata that needs to persist to the next opening of the DB
● In order for the merge thread to know which page range to merge, we keep track of the

tailsRecordsSinceLastMerge count even after the DB closes
● In our tables_metadata file we keep track of the metadata for each table, that way if we

do new inserts we know the current pageRange, number of columns, and key for each
table

table_name,page_range_index,tailRecordSinceL
astMerge

Grades,0,40000
Grades,1,8000

Grades,2,16000
Grades,3,26444
Grades,4,40000

table_name,num_columns,key,currentPRIndex
Grades,5,0,4

page_range_metadata.txt tables_metadata.txt

Metadata: Data Persistence

Agenda

Buffer Pool Merge Index

Index: An RHash Implementation

15

12

1

20

99

42

key20rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

rid5 rid3 rid6 rid12

key15

key12

key99

key42

NULL

min
Seed

median
Seed

max
Seed

15

12

1

20

99

42

key20rid12

rid12

rid12

rid12

rid12

rid12

key15

key12

key99

key42

NULL

15

12

1

20

99

42

key20rid12

rid12

rid12

rid12

rid12

rid12

key15

key12

key99

key42

NULL

15

12

1

20

99

42

key20rid12

rid12

rid12

rid12

rid12

rid12

key15

key12

key99

key42

NULL

Index: Multi-Column RHash

Student ID Grade 1 Grade 2

RHash indexing can be used on any data column

Tester Runtimes

m2_tester_part1 m2_tester_part2

Number of Records

1,000

2,001

10,000

8.22 sec

15.58 sec

1.39.06 min

2.85 sec

4.06 sec

26.03 sec

Conclusion

Some aspects of the project that we would like to

investigate in the next milestone:

● Attempting to merge records by pages

instead of page ranges

● Exploring more efficient eviction policies

● Optimizing the buffer pool’s runtimes with

larger amounts of records

Questions

