
L-Store:
Milestone 3
ECS 165A: Database Systems
Yiling Chen, Tina Young, Olivia Tobin, 
Charissa Tseng, Matthew Boentoro



2 Main Parts

1

Transaction 
Semantics 

(ACID)

2

Multithreading 
Concurrency 

Control



Transaction 
Semantics



Threads, Transactions and Xacts

Single Thread

Transaction 1 Transaction n...

Write(), Write(), Write()...

Read(), Write(), Read()...

Read(), Read(), Read()...

...

...

...

...

...

Write(), Write(), Write()...

Read(), Write(), Read()...

Read(), Read(), Read()...

...

THREAD

TRANSACTION

STATEMENTS
or Xacts



ACID: Atomicity

transaction runs 
successfully

transaction 
operations fails

Transaction A

abort()

commit()

Write(), Write(), Write()...

Read(), Write(), Read()...

Read(), Read(), Read()...

...

Transaction B

Some Possibilities:

1. fail to acquire lock (most common)
2. DB crashes/errors
3. power failures

fails



Multithreading 
Concurrency 
Control



ACID: Isolation

Issues in Thread Synchronization

DeadLocks Race Condition

2PL & QueCC Latch



Locks vs Latches

Separate...

Locks

Threads

Protect...

During

DB Content

User Transaction

In-Memory Data Structure

Critical SectionEntire Transaction

Latches

Kept in... Lock Manager (Hashmap) Protected Data Structure



Locks: 2PL

Shared

Read()

Exclusive

Write()
INSERT(), UPDATE(), DELETE()

SELECT(), SUM(), AGGREGATE()
query(*args == 3)

query(*args != 3)



Lock: 2PL (Shared)

Is there an exclusive lock?

Shared lock grantedShared lock not granted

No exclusive lockExclusive lock is present



Lock: 2PL (Exclusive)
Is there a shared lock?

EL granted EL not granted

No Shared Lock

Has Exclusive lock

Has shared lock

No Exclusive Lock

Is there an exclusive lock? Who holds the shared lock?

The one 
reading is the 

one writing

The one/ones 
reading is NOT 
the one writing

EL not grantedUpgrade to EL

* will be protected 
by latch as well



Locks: QueCC
Low priority Queue

High Priority Queue

class Planner:

= Transactions

Transaction worker

. . . 

. . . 

Planning Thread #1

Planning Thread #2



Locks: QueCC

Transaction worker

insert
update
select

Since Ranking is Arbitrary, 
Index in Priority List = RID % 10

Eg: RID = 1001, Index = 1001%10 = 1



Locks: QueCC
Low priority Queue

High Priority Queue

Planning Thread #1

Transaction worker
. . . 

. . . 

Planning Thread #2

w(5)

r(1)

w(3)

w(2)
r(1)

r(3)

w(2)

r(4)

r(1) w(3)w(2)

r(1)

w(5)r(3)w(2) r(4)



Locks: QueCC
Low priority Queue

High Priority Queue

Transaction worker
. . . 

. . . 

r(1) w(3)w(2)

r(1)

w(5)r(3)w(2) r(4)execute



Additional 
Implementation



Additional Aggregate Functions

max()

Get the 
maximum 

value

min()

Get the 
minimum 

value

avg()

Get the 
average 

value

count()

Get the 
count*

*does not support multi-thread 
implementation



Things to Improve Upon 
● Writing the program in a different language to support multithreading 

○ C++ or Java
● Code writing style

○ Commenting
● Improving algorithm efficiency within functions

○ Removing nested and repeated loops



Thank You!


