ECS 165A Milestone 3

Team Waifus Forever

•••

. . .

. . .

. . .

Our Team

Caroline Yau Team

Coordinator, Developer Alvin Ho System Architect, Developer

<u>Peter Lo</u> System Architect, Developer

Alejandro Armas

Manager, System Architect, Developer, Tester

Roberto Lozano

System Architect, Developer

- •••
-
- . . .
 - . . .
 - . . .

01 Overview Design and Solution

- •••
-

Implementation

01 Transaction Semantics Overview

02 QueCC

- lazy merge implemented
- restarting database now works
 - > we previously could not perform certain queries
- multi-indexing

Transaction Semantics

- 1: BEGIN tran;
- 2: SELECT * FROM my_table WHERE id > 4760 AND id <= 4780;
- 3: INSERT INTO my_table
- 4: VALUES (92106429, 15, 2, 11, 13);
- 5: COMMIT tran;

- set of operations over shared data that transforms the data from one consistent state to another.

Atomicity

if ALL transaction operations successful:

database is transitioned into a new consistent state

else:

NONE is executed and the database remains in the original state.

Consistency

- integrity constraints set by users

Isolation

- we need to avoid conflicting operations when we interleave concurrent transactions
- CC protocols facilitate coordination among transactions to ensure correct ordering of operations

Durability

- Achieved maintaining an ordered undo and/or redo actions
- Necessary for rolling back aborted transactions when dealing with weak isolation

Queue Oriented Control Free Concurrency¹

Goal: Abandon complex concurrency:

- Hardware trends point to opportunities in leveraging parallelism
 - more contention
- simply execute transactions serially on disjoint partitions of data
 - H-Store introduced this idea²
- Exploit determinism through planning³
- Deterministic schemes eliminate all execution induced aborts
 - e.g. deadlocks

QueCC: A Queue-oriented, Control-free Concurrency Architecture ¹ Thamir M. Qadah, Mohammad Sadogh, 2018

H-store: A high performance, distributed main memory transaction processing system.²

R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi, 2008

Calvin: Fast distributed transactions for partitioned database systems³

A. Thomson, T. Diamond, S. C. Weng, K. Ren, P. Shao, and D. J. Abadi, 2012

• • • • • • • • • • • • • •

QueCC

• • • • • • • • • • • • • •

. . .

QueCC

Planning Stage

••••

•••

. . .

Concurrent Batch Planning

Code Performance: Score

SCHEMA_STRING 01111 Selecting key: 92107428 base [92107428, 155, 159, 154, 144] SCHEMA_STRING 01111 Score 1000 / 1000

•••

O3 Demo A live demonstration of the code

