
ECS165A Milestone 2

Winter 2022
Michael Pitts, Jericho Mata, Ethan Yu, Ryan Cen and Yuyi Li

Goals & Objectives

There are three objectives we hope to achieve in this project:

● The first concern is balancing data in memory and disk.

● The second objective is to expand select index capabilities.

● The last objective is data reorganization through a contention-free merge.

Buffer pool

Disk

Page

Page range

Page file
Add_record,
Update_record

Query system

make dirty select User

Make clean

Updated Architecture

find_record

Bufferpool and Extension

● Due to limited memory space, we would like to
save the more frequently used data(most
recently used pages) in memory while keeping
the less frequent ones in the disk.

● Pinning pages happens when we are currently
using it.

Buffer pool

Disk

Bufferpool Eviction policy

● When it comes to evicting pages, we get rid of the least recently used
ones. In the function evict_page(), we first clean the page first with
make_clean(), then iterate through the bufferpool to find the least used,
unpinned pages to evict.

● Lock up the disk whenever committing to it so we utilized the lock
function alike to multithreading in the OS.

Quicksort(time)
Time

0

14

Eviction process

Once the sorted
array is extracted the
function the runs down
the list of pages from
least recently used to
most looking for an
unpinned page. Once it is
found that page is
evicted.

For page in sorted_pages:
if(page not in pinned_pages):

bpool.remove(page)

page1

page2

page3

page4

page5

page6

page7

page8

page9

page10

page11

page12

page13

page14

page15

Eviction process

What’s happening

The Pseudo-disk:

Disk folder Table folder

B1-1 B1-2 B1-3

T1-1 T1-2 T1-3

T2-1 T2-2 T2-3

T3-1 T3-2 T3-3

page file

● numrecords
● page_name
● table_name

● data
bytearray

Merge function

Columns

Page_range

n
records

Tail pages

Columns
The 999 tail pages are the compressed for
each column in the page range.

Base page consolidator

Result of Merge:

Because of this merge the update and select function no
longer have to wade through a sea of tail pages to find
their target. The result of this is greatly improved
performance.

Origin base page

Merge function Cont’l

Indexing

Age job title salary YOE

Table: Company

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

What’s happening

All the columns
are filled with base rids
that are sorted by their
get_newest_value
which returns the most
updated tail page value.

Primary Key

Indexing Cont’l

SELECT *
From Company
Where YOE >= 3;

Query Processing

Age job title salary YOE

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Base rid

Primary Key

Base rid

Base rid

Base rid

Base rid

Base rid

YOE

YOE=3
Index = 2

Result

Newest tail
record from
each column
from index 2
down.

Things to improve

● Speed, this can be improved through optimizing what
data-structure we use throughout our system.

● Switch from a cumulative database to a non-cumulative database

Q & A Time

