
L-Store
Milestone 3

ECS 165A
Natheenthorn Teachaurangchit

Michael Shaw
Stuart Feng
Henry Chou

Transaction Semantics

Concurrency Control

Shared & Exclusive Locks (Granting Conditions)
Lock Management

No-Wait 2PL Policy

Forward Looking
Post-M3 Database Program

Transaction Semantics

Shared & Exclusive Locks

Exclusive Locks:

1. Insert

2. Delete

3. Update

Shared Locks:

1. Select

2. Sum
Conditions of granting

different locks:

Initially Holds

Shared Exclusive

Request For
Shared Grant No Grant

Exclusive No Grant No Grant

* One exception if the same thread tried to exchange its shared lock for an exclusive lock, we will grant the request

Lock Management
Using Python Dictionary to keep track of all the locks on different RIDs

RID Lock (s)

1 [Exclusive: Worker 10]

2 [Shared: Worker 4]

3 [Exclusive: Worker 9]

4 [Shared: Worker 8, Shared: Worker 2]

5 [Exclusive: Worker 7]

RID: 2, Exclusive

RID: 4, Shared

RID: 6, Exclusive
Lock Management Map

Abort Transaction

Commit TransactionsWorker 2

Worker 1

Worker 3

Concurrency Control

Strict No-Wait 2PL Policy

Tail Page

Database

Scenario 1: The thread was able to obtain the lock successfully

Obtained lock and committed changes successfully

New updated record

*Note: Rollback is only for insert, update, and delete. For read and sum, the thread will simply abort

Strict No-Wait 2PL Policy
Scenario 2: The thread was not able to obtain the lock and has to abort

Tail Page

Database

Log the timestamp, thread name, and reason why
thread was aborted

Revert changes to the table as the thread called abort

New updated record

Log.txt
*Note: Rollback is only for insert, update, and delete. For read and sum, the thread will simply abort

Roadmap

Discussed and implemented shared, exclusive locks, and
lock map

Implemented abort and rollback mechanism for failed
threads

Integrated meaningful logging when threads call abort
method

Attempted a retry mechanism for aborted threads using
Priority Queue

Rolled back to former implementation without retry
mechanism

Forward Looking
Post-M3 Database Program

Attempted a second version of Milestone 3 as a prototype, which replicates the Consumer-Producer model to resemble the real world use of

database with threads

Planner thread (s) Executor thread (s)
Custodian thread

Basic Idea:

- Create a transaction queue that stores all the aborted thread so that we can re-execute them

- Create layers of queues to effectively re-arrange threads based on transactions to enhance performance

Thank you!

