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Scalability versus Fully-Replicated Blockchains

Scalability: adding resources =⇒ adding performance.

Full replication: adding resources (replicas) =⇒ less performance!
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Distributed Systems: Scalability

Single System
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Partition the system: More storage and potentially more performance.

Potentially lower latencies if data ends up closer to users.

Adding shards =⇒ adding throughput (parallel processing), adding storage.
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Distributed Systems: Specialization
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Specialize the system: Different nodes have distinct tasks.

Specialized hardware and software per task.

Specializing roles =⇒ adding throughput (parallel processing, specialized hardware, . . . ).
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Central Ideas for Improvement

Reminder

We can make a resilient system that manages data: e.g., fully-replicated blockchains.

▶ Role Specialization: make the storage system a blockchain.

Requires: reliable read-only updates of the blockchain.
Permissionless blockchains: light clients!

▶ Sharding: make each shard an independent blockchain.

Requires: reliable communication between blockchains.
Permissionless blockchains: relays, atomic swaps!

Consensus is of no use here if we want efficiency.
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Reliable Read-Only Updates of Fault-Tolerant Clusters

Definition

Let C be a cluster deciding on a sequence of transactions L and l be a learner.

The Byzantine learning problem is the problem of sending L from C to l such that:

▶ the learner l will eventually receive all decided transactions;

▶ the learner l will only receive decided transactions.

Practical requirements

▶ Minimizing overall communication.

▶ Load balancing among all replicas in C.
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Background: Information Dispersal Algorithms

Definition

Let v be a value with storage size s = ∥v∥.
An information dispersal algorithm can encode v in n pieces v ′

such that v can be decoded from every set of n− f such pieces.

Theorem (Rabin 1989)

The IDA algorithm is an optimal information dispersal algorithm:
▶ Each piece v ′ has size

⌈
∥v∥
n−f

⌉
.

▶ The n− f pieces necessary for decoding have a total size of (n− f)
⌈

∥v∥
(n−f)

⌉
≈ ∥v∥.



8/56

The Delayed-Replication Algorithm

Idea: C sends a ledger to learner l

1. Partition the ledger in sequences S of n transactions.

2. Replica ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica ri ∈ C sends Si with a checksum Ci(S) of S to l.

4. l receives at least n− f distinct pieces and decodes S.

Observation (n > 2f)
▶ Replica ri sends at most B =

⌈
∥S∥
n−f

⌉
+ c ≤ 2∥S∥

n + 1+ c = O(∥S∥n + c) bytes.
▶ Learner l receives at most n · B = O(∥S∥+ cn) bytes.
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Communication by the Delayed-Replication Algorithm

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12

Update decision −→

No dispersal First 4 update decisionsSecond 4 update decisions

Learned

L[0 : 4]
Learned

L[4 : 8]
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Decoding S Using Simple Checksums (n > 2f)

▶ Use checksums hash(S).
▶ The n− f non-faulty replicas will provide correct pieces.
▶ At least n− f > f messages with correct checksums.

l

First x hashes received by l

Wait until f + 1 ≤ nf identical hashes: hash(S).

G

F

at least x − f good hashes

at most f faulty hashes

▶ Intensive for learners: one can choose n− f out of n messages in

( n
n−f

)
ways

only one such choice is guaranteed to be correct!
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Decoding S Using Tree Checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.
We construct the checksum C5(S) of S (used by r5).

h0
(S0)

h1
(S1)

h2
(S2)

h3
(S3)

h4
(S4)

h5
(S5)

h6
(S6)

h7
(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Construct a Merkle tree for pieces S0, . . . , S7.
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Decoding S Using Tree Checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.
We construct the checksum C5(S) of S (used by r5).

h0
(S0)

h1
(S1)

h2
(S2)

h3
(S3)

h4
(S4)

h5
(S5)

h6
(S6)

h7
(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].
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Delayed-Replication: Main Result (n > 2f)

Theorem

Consider the learner l, replica r, and decided transactions T . The delayed-replication
algorithm with tree checksums guarantees

1. l will learn T ;

2. l will receive at most |T | messages with a total size of O(∥T ∥+ |T | log n);
3. l will only need at most |T |

n decode steps;

4. r will sent at most |T |
n messages to l of size O(∥T ∥+|T | log n

n ).
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Application: Scalable Storage for Resilient Systems

▶ Replicas typically only need the current data V to decide on future updates.

▶ Replicas only need the full ledger L for recovery .
▶ We can use delayed-replication to reduce the data each replica has to store.

Theorem

The storage cost per replica can be reduced from

O(∥L∥+ ∥V∥) to O(
∥L∥
n− f

+
|L|
n

log(n) + ∥V∥).
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Reliable Communication between Fault-Tolerant Clusters

Definition

Let C1, C2 be two clusters, both having non-faulty replicas.

The cluster-sending problem is the problem of sending a value v from C1 to C2 such that:

1. non-faulty replicas in C2 receive v ;
2. non-faulty replicas in C1 confirm that v was received by the non-faulty replicas in C2;
3. replicas in C2 only receive v if all non-faulty replicas in C1 agree upon sending v .

Informal Definition

Successfully sending a value v from a cluster C1 to a C2 without any faulty replicas being

able to disrupt sending or send alternative forged values.
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Basic Cluster-Sending via Broadcasting

Goal: send a value v from cluster C1 to cluster C2.

Assumptions

▶ Every replica in C1 has a certificate cert(v, C1) that proves agreement.

▶ Communication is reliable.
▶ At-most two replicas faulty in each cluster.

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5

r2,1 r2,2 r2,3 r2,4 r2,5
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Goal: send a value v from cluster C1 to cluster C2.

Assumptions
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Basic Cluster-Sending via Broadcasting (Without Certificates)

Goal: send a value v from cluster C1 to cluster C2.

Assumptions

▶ Every replica r ∈ C1 can only claim agreement via a digital signature cert(v, r).
▶ Communication is reliable.
▶ At-most two replicas faulty in each cluster.

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5

r2,1 r2,2 r2,3 r2,4 r2,5

cert(w, r1,5)
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Basic Cluster-Sending via Broadcasting (Without Certificates)

Goal: send a value v from cluster C1 to cluster C2.

Assumptions

▶ Every replica r ∈ C1 can only claim agreement via a digital signature cert(v, r).
▶ Communication is reliable.
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C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5
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cert(w, r1,5)

Without certificates: at least fC1 + 1 distinct received messages by non-faulty senders!
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Efficient Cluster-Sending

Cluster-Sending via broadcasting: straightforward, not efficient :
▶ With certificates: (fC1 + 1)(fC2 + 1) ≈ fC1 × fC2 messages.

▶ With claims: (2fC1 + 1)(fC2 + 1) ≈ 2fC1 × fC2 messages.

Local communication versus global communication

Ping round-trip times (ms) Bandwidth (Mbit/s)
OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977

Goal: Minimize communication between clusters.
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Towards a Lower-Bound for Cluster-Sending (Example)

nC1 = 15 fC1 = 7

nC2 = 5 fC2 = 2

Proposition (assuming certificates)

Any correct algorithm needs to send at least 14 messages.
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Lower-Bound for Cluster-Sending with Certificates

Basic Idea

▶ One message needs to be exchanged between a non-faulty sender and receiver.

▶ Have to deal with size imbalances between clusters.

Theorem

Let C1, C2 be two clusters and let {i, j} = {1, 2} such that nCi ≥ nCj . Let

qi = (fCi + 1) div nfCj ,

ri = (fCi + 1)modnfCj ,

σi = qinCj + ri + fCj sgn ri.

Any protocol that solves the cluster-sending problem in which C1 sends a value v to C2 needs
to exchange at least σi messages.
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Lower-Bound for Cluster-Sending with Certificates (Example)

Theorem

Let C1, C2 be two clusters and let

q1 = (fC1 + 1) div nfC2 = 7 div 3 = 2,

r1 = (fC1 + 1)modnfC2 = 7mod 3 = 1,

σ1 = q1nC2 + r1 + fC2 sgn r1 = 2 · 5+ 1+ 3 = 14.

Any protocol that solves the cluster-sending problem in which C1 sends a value v to C2 needs
to exchange at least σ1 = 14 messages.
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Lower-Bound for Cluster-Sending with Claims

Basic Idea

▶ fC1 + 1 message needs to be sent by distinct non-faulty senders to non-faulty receiver.

▶ Have to deal with size imbalances between clusters.

Theorem

Let C1, C2 be two clusters and let {i, j} = {1, 2} such that nCi ≥ nCj . Let

q1 = (2fC1 + 1) div nfC2 , q2 = (fC2 + 1) div (nfC1 − fC1)
r1 = (2fC1 + 1)modnfC2 , r2 = (fC2 + 1)mod (nfC1 − fC1)
τ1 = q1nC2 + r1 + fC2 sgn r1 τ2 = q2nC1 + r2 + 2fC1 sgn r2.

Any protocol that solves the cluster-sending problem in which C1 sends a value v to C2 needs
to exchange at least τi messages.
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Bijective Sending with Certificates

Assume fC1 + fC2 + 1 ≤ min(nC1 ,nC2).

We have σ1 = σ2 = fC1 + fC2 + 1.

Protocol for the sending cluster C1:
1: All replicas in GC1 agree on v and construct cert(v, C1).
2: Choose replicas S1 ⊆ C1 and S2 ⊆ C2 with nS2 = nS1 = fC1 + fC2 + 1.

3: Choose a bijection b : S1 → S2.
4: for r1 ∈ S1 do
5: r1 sends (v, cert(v, C1)) to b(r1).

Protocol for the receiving cluster C2:
6: event r2 ∈ GC2 receives (w, cert(w, C1)) from r1 ∈ C1 do
7: Broadcast (w, cert(w, C1)) to all replicas in C2.
8: event r′

2
∈ GC2 receives (w, cert(w, C1)) from r2 ∈ C2 do

9: r
′
2
considers w received .
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Bijective Sending with Certificates: Example

nC1 = 8 fC1 = 3

nC2 = 7 fC2 = 2

σ1 = 6.

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8

r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7

b
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Bijective Sending with Claims

Assume 2fC1 + fC2 + 1 ≤ min(nC1 ,nC2).

We have τ1 = τ2 = 2fC1 + fC2 + 1.

Protocol for the sending cluster C1:
1: All replicas in GC1 agree on v .
2: Choose replicas S1 ⊆ C1 and S2 ⊆ C2 with nS2 = nS1 = 2fC1 + fC2 +1.

3: Choose bijection b : S1 → S2.
4: for r1 ∈ S1 do
5: r1 sends (v, cert(v, r1)) to b(r1).

Protocol for the receiving cluster C2:
6: . . . .
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Bijective Sending with Claims

Assume 2fC1 + fC2 + 1 ≤ min(nC1 ,nC2).

We have τ1 = τ2 = 2fC1 + fC2 + 1.

Protocol for the sending cluster C1:
1: . . . .

Protocol for the receiving cluster C2:
6: event r2 ∈ GC2 receives (w, cert(w, r

′
1
)) from r

′
1
∈ C1 do

7: Broadcast (w, cert(w, r′
1
)) to all replicas in C2.

8: event r′
2
∈ GC2 receives fC1 + 1 messages (w, cert(w, r′

1
)):

(i) each message is sent by a replica in C2;
(ii) each message carries the same value w ; and
(iii) each message has a distinct signature cert(w, r′

1
), r′

1
∈ C1

do
9: r

′
2
considers w received .
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Generalizing Bijective Sending

Consider bijective sending from C1 to C2, nC1 ≥ σ1 > nC2 , with certificates.

▶ Bijective sending requires fC1 + fC2 + 1 distinct replicas in both clusters.

▶ Restrictive: clusters of roughly the same size.

Generalize bijective sending

▶ Partition σ1 replicas of C1 into nC2-sized clusters.

▶ Bijective send from each cluster in the partition to C2.
▶ nC1 ≥ σ1 holds always if nC1 > 3fC1 and nC2 > 3fC2 .

C1:

C2:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8 r1,9 r1,10 r1,11 r1,12 r1,13 r1,14 r1,15

r2,1 r2,2 r2,3 r2,4 r2,5

P1 P2 P ′
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Partitioned Bijective Sending

Corollary

Consider the cluster-sending problem in which C1 sends a value v to C2.
1. If nC > 3fC for all clusters C and replicas only have crash failures or omit failures, then

(partitioned) bijective sending solves cluster-sending with optimal message complexity.

2. If nC > 3fC for all clusters C and clusters can produce certificates, then (partitioned)
bijective sending solves cluster-sending with optimal message complexity.

3. If nC > 4fC for all clusters C and replicas can digitally sign claims, then (partitioned)
bijective sending solves cluster-sending with optimal message complexity.

These protocols solve cluster-sending using O(max(nC1 ,nC2)) messages of size O(∥v∥) each.
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Cluster-sending: Can we do Better?

Pessimistic

No: these algorithms are worst-case optimal.

Cannot do better than linear communication in the size of the clusters.

Probabilistic

Yes: if we randomly choose sender and receiver, then we often do much better!

Probabilistic approach: expected-case only constant communication (four steps).
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Motivation: High-Performance Resilient Systems

Single System

(All Data)

Requests

(All Data)

r1 r2

r3 r4

=⇒

European Node

(European Data)

American Node

(American Data)

(coordination)

Requests

(Mixed Data)

Requests

(European Data)

Requests

(American Data)

e1 e2

e3 e4

a1 a2

a3 a4

Partition the system: More storage and potentially more performance.

Potentially lower latencies if data ends up closer to users.

Adding shards =⇒ adding throughput (parallel processing), adding storage.
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▶ Individual shards are consensus-operated blockchains.
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Transactions

A user interaction with a DBMS: transaction.

Definition

A transaction is any one execution of a user program in a DBMS:

the basic unit of change as seen by the DBMS.

A transaction can be

▶ a single query;

▶ a set of queries;

▶ a interactive dialog between DBMS and program;

▶ . . . .
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The ACID Properties

Contract between a DBMS and its users.

Given a transaction τ , a DBMS maintains

Atomicity. Either all or none of the operations of τ are reflected in the database.

Consistency Execution of τ in isolation preserves data consistency.

E.g., integrety constraints—this is stronger than CAP-Consistency.

Isolation τ is “unaware” of other transactions executing concurrently

“As-if” all transactions are executed in a sequential order.

Durability After τ completes successfully, the changes τ made persist.

If τ fails, then no changes persist due to atomicity.

Assumption: individual transactions make sense (do not violate consistency).

Durability is strong: crashing or killing the DBMS program, power outage, . . . .

Typical assumption: storage is permanent & reliable.
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Background on Resilience

Consider a transaction τ requested by client c in a resilient system.

τ is processed in five steps

1. τ needs to be received by the system;

2. τ must be replicated among all replicas in the system;

3. the replicas need to agree on an execution order for τ ;

4. the replicas each need to execute τ and update their current state accordingly;

5. the client c needs to be informed about the result.

Non-sharded resilient systems

▶ Consensus solves all of the above.

▶ In particular replication order is execution order .
▶ Consecutive execution guarantees ACID.
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Running Example: A Banking System

Setting: Transactions change the balance of one or more accounts

The current state is the balance of each account obtained by executing transactions.

τ1 = “add $500 to Ana”;

τ2 = “add $200 to Bo and $300 to Elisa”;

τ3 = “move $30 from Ana to Elisa”;

τ4 = “remove $70 from Elisa”;

τ5.

Ana $0

Bo $0

Elisa $0

τ1−→
Ana $500

Bo $0

Elisa $0

τ2−→
Ana $500

Bo $200

Elisa $300

τ3−→
Ana $470

Bo $200

Elisa $330

τ4−→
Ana $470

Bo $200

Elisa $260
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τ3 = “move $30 from Ana to Elisa”;

τ4 = “remove $70 from Elisa”;

τ5 = aborted (would invalidate balances).

Ana $0

Bo $0

Elisa $0

τ1−→
Ana $500

Bo $0

Elisa $0

τ2−→
Ana $500

Bo $200

Elisa $300

τ3−→
Ana $470

Bo $200

Elisa $330

τ4−→
Ana $470

Bo $200

Elisa $260
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Toward a Sharded and Resilient System

Consider a transaction τ requested by client c in a resilient system.

τ is processed in five steps

1. τ needs to be received by the system;

2. τ must be replicated among all replicas in the system;

3. the replicas need to agree on an execution order for τ ;

4. the replicas each need to execute τ and update their current state accordingly;

5. the client c needs to be informed about the result.
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Consider a transaction τ requested by client c in a resilient system.

τ is processed in five steps

1. τ needs to be received by the system;

2. τ must be replicated among all replicas in the system;

3. the replicas need to agree on an execution order for τ ;

4. the replicas each need to execute τ and update their current state accordingly;

5. the client c needs to be informed about the result.

τ must be replicated among all replicas of all shards affected by τ !
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Toward a Sharded and Resilient System

Consider a transaction τ requested by client c in a resilient system.

τ is processed in five steps

1. τ needs to be received by the system;

2. τ must be replicated among all replicas in the system;

3. the replicas need to agree on an execution order for τ ;

4. the replicas each need to execute τ and update their current state accordingly;

5. the client c needs to be informed about the result.

What is a consistent execution order across shards? Does it relate to the replication order?
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Toward a Sharded and Resilient System

Consider a transaction τ requested by client c in a resilient system.

τ is processed in five steps

1. τ needs to be received by the system;

2. τ must be replicated among all replicas in the system;

3. the replicas need to agree on an execution order for τ ;

4. the replicas each need to execute τ and update their current state accordingly;

5. the client c needs to be informed about the result.

Dependencies on data in other shards? Writes to data in other shards?
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Toward a Sharded and Resilient System

Consider a transaction τ requested by client c in a resilient system.

τ is processed in five steps

1. τ needs to be received by the system;

2. τ must be replicated among all replicas in the system;

3. the replicas need to agree on an execution order for τ ;

4. the replicas each need to execute τ and update their current state accordingly;

5. the client c needs to be informed about the result.

A single consensus does no longer solve all of the above!
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Sharding Data

Sharded system: Data is distributed over all shards.

A sharded banking system

Say we have 26 shards: Ca, Cb, . . . , Cz ,
such that shard Cξ holds accounts of people whose name starts with ξ.

We write shards(τ) to denote the shards affected by transaction τ .

τ1 = “add $500 to Ana”,

shards(τ1) = {Ca}; (single-shard)

τ2 = “add $200 to Bo and $300 to Elisa”,

shards(τ2) = {Cb, Ce}; (multi-shard)

τ3 = “move $30 from Ana to Elisa”;

shards(τ3) = {Ca, Ce}; (multi-shard)

τ4 = “remove $70 from Elisa”,

shards(τ4) = {Ce}. (single-shard)
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Sharding Data

Sharded system: Data is distributed over all shards.

A sharded banking system

Say we have 26 shards: Ca, Cb, . . . , Cz ,
such that shard Cξ holds accounts of people whose name starts with ξ.

We write shards(τ) to denote the shards affected by transaction τ .

τ1 = “add $500 to Ana”, shards(τ1) = {Ca};

(single-shard)

τ2 = “add $200 to Bo and $300 to Elisa”, shards(τ2) = {Cb, Ce};

(multi-shard)

τ3 = “move $30 from Ana to Elisa”; shards(τ3) = {Ca, Ce};

(multi-shard)

τ4 = “remove $70 from Elisa”, shards(τ4) = {Ce}.

(single-shard)
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Sharding Data

Sharded system: Data is distributed over all shards.

A sharded banking system

Say we have 26 shards: Ca, Cb, . . . , Cz ,
such that shard Cξ holds accounts of people whose name starts with ξ.

We write shards(τ) to denote the shards affected by transaction τ .

τ1 = “add $500 to Ana”, shards(τ1) = {Ca}; (single-shard)

τ2 = “add $200 to Bo and $300 to Elisa”, shards(τ2) = {Cb, Ce}; (multi-shard)

τ3 = “move $30 from Ana to Elisa”; shards(τ3) = {Ca, Ce}; (multi-shard)

τ4 = “remove $70 from Elisa”, shards(τ4) = {Ce}. (single-shard)
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An Example of Concurrent Execution

Consider a banking example in which

▶ Bo wants to transfer $400 to Ana
if Ana has at-least $100 and Bo has at-least $700,

▶ Ana wants to transfer $300 to Elisa
if Ana has at-least $500,

and no account is allowed to have a negative balance.
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Consider a banking example in which

▶ Bo wants to transfer $400 to Ana
if Ana has at-least $100 and Bo has at-least $700,

▶ Ana wants to transfer $300 to Elisa
if Ana has at-least $500,

and no account is allowed to have a negative balance.

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.
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An Example of Concurrent Execution

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

A $100

B $300

E $0

τ1 at Ca−−−−−−−→
A ≥ 100?

A := A+ 400

A $500

B $300

E $0

τ2 at Ca−−−−−−−→
A ≥ 500?

A := A− 300

A $200

B $300

E $0

τ1 at Cb−−−−−→
B ≥ 700?

(cancel)

A $200

B $300

E $0

τ1 at Ca−−−−−−−→
A := A− 400

(undo)

A -$200

B $300

E $0

τ2 at Ce−−−−−−−→
E := E + 300

A -$200

B $300

E $300
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An Example of Concurrent Execution–Revisited

Consider a banking example in which

▶ Bo wants to transfer $400 to Ana
if Ana has at-least $100 and Bo has at-least $700,

▶ Ana wants to transfer $300 to Elisa
if Ana has at-least $500,

and no account is allowed to have a negative balance.

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Transactions τ1 and τ2 make sense:

their isolated execution will never make balances negative.

Guarantee by an ACID-compliant system

No account will ever have a negative balance.
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Serializability: a High Standard for Isolation

Consider a set of transactions S = {τ1, . . . , τn}.

Definition

A serial schedule is an execution of S without interleaving of transaction steps.

Hence, each transaction is executed in sequence, one at a time.

Definition

A serializable schedule is a schedule whose effect on any consistent instance is guaranteed

to be identical to that of some serial schedule over the committed transactions in S.

Serializability assumes aborted transactions have no side effects.

This is not always the case (example later).
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Simplified Transaction Notation

Consider the transaction τ :

τ = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Elisa;

move $100 from Bo to Elisa”.
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Simplified Transaction Notation

Consider the transaction τ :

τ = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Elisa;

move $100 from Bo to Elisa”.

What are the operations of τ?

Depending on how the system executes τ and the database state:

▶ Might read from Ana’s account.
▶ Might read from Bo’s account.
▶ Might write to Ana’s account.
▶ Might write to Bo’s account.
▶ Might write to Elisa’s account.
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Simplified Transaction Notation

Consider the transaction τ :

τ = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Elisa;

move $100 from Bo to Elisa”.

Simplifying assumption

Each transaction is a sequence of read and write operations ending in commit or abort .

Readτ (Ana),Readτ (Bo),Writeτ (Ana),Writeτ (Bo),Readτ (Elisa),Writeτ (Elisa),Commitτ .
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Consider the transaction τ :

τ = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Elisa;

move $100 from Bo to Elisa”.

Simplifying assumption

Each transaction is a sequence of read and write operations ending in commit or abort .

Readτ (Ana),Readτ (Bo),Writeτ (Ana),Writeτ (Bo),Readτ (Elisa),Writeτ (Elisa),Commitτ .
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ1, then τ2 (insufficient funds)

Instance

(initial)

A $100

B $300

E $0

Schedule
Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(A)
Abortτ1

Readτ2(A)
Abortτ2

Instance

(final)

A $100

B $300

E $0
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ1, then τ2 (insufficient funds)

Instance

(initial)

A $100

B $300

E $0

Schedule
Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(A)
Abortτ1

Readτ2(A)
Abortτ2

Instance

(final)

A $100

B $300

E $0
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ1, then τ2 (insufficient funds)

Instance

(initial)

A $100

B $300

E $0

Schedule
Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(A)
Abortτ1

Readτ2(A)
Abortτ2

Instance

(final)

A $100

B $300

E $0
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ1, then τ2 (Bob has sufficient funds)

Instance

(initial)

A $100

B $800

E $0

Schedule
Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Instance

(final)

A $200

B $400

E $300
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Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ1, then τ2 (Bob has sufficient funds)

Instance

(initial)

A $100

B $800

E $0

Schedule
Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Readτ2(A)
Writeτ2(A)
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Writeτ2(E)
Commitτ2

Instance

(final)

A $200

B $400

E $300
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Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ1, then τ2 (Bob has sufficient funds)

Instance

(initial)

A $100

B $800

E $0

Schedule
Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1
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Writeτ2(A)
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Instance

(final)
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ2, then τ1 (Bob has sufficient funds)

Instance

(initial)

A $100

B $800

E $0

Schedule
Readτ2(A)
Abortτ2

Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Instance

(final)

A $500

B $400

E $0
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ2, then τ1 (Bob has sufficient funds)

Instance

(initial)

A $100

B $800

E $0

Schedule
Readτ2(A)
Abortτ2

Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Instance

(final)

A $500

B $400

E $0
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Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ2, then τ1 (Bob has sufficient funds)

Instance

(initial)

A $100

B $800

E $0

Schedule
Readτ2(A)
Abortτ2

Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Instance

(final)

A $500

B $400

E $0
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ2, then τ1 (Ana has sufficient funds)

Instance

(initial)

A $500

B $300

E $0

Schedule
Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(A)
Abortτ1

Instance

(final)

A $200

B $300

E $300



39/56

An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ2, then τ1 (Ana has sufficient funds)

Instance

(initial)

A $500

B $300

E $0

Schedule
Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Readτ1(A)
Writeτ1(A)
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Writeτ1(A)
Abortτ1

Instance

(final)

A $200

B $300
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Serial schedule: τ2, then τ1 (Ana has sufficient funds)

Instance

(initial)

A $500

B $300

E $0

Schedule
Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(A)
Abortτ1

Instance

(final)

A $200

B $300

E $300
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—Earlier example

Instance

(initial)

A $100

B $300

E $0

Schedule
Readτ1(A)
Writeτ1(A)

Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Readτ1(B)
Readτ1(A)
Writeτ1(A)
Abortτ1

Instance

(final)

A -$200

B $300

E $300
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—Earlier example

Instance

(initial)

A $100

B $300

E $0

Schedule
Readτ1(A)
Writeτ1(A)

Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Readτ1(B)
Readτ1(A)
Writeτ1(A)
Abortτ1

Instance

(final)

A -$200

B $300

E $300
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Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—Earlier example

Instance

(initial)

A $100

B $300

E $0

Schedule
Readτ1(A)
Writeτ1(A)

Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Readτ1(B)
Readτ1(A)
Writeτ1(A)
Abortτ1

Instance

(final)

A -$200

B $300

E $300
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—Another example

Instance

(initial)

A $500

B $800

E $0

Schedule
Readτ1(A)

Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Instance

(final)

A $900

B $400

E $300
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τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—Another example
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Readτ2(E)
Writeτ2(E)
Commitτ2

Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Instance

(final)

A $900

B $400

E $300



39/56

An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—Another example
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A $500

B $800
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Schedule
Readτ1(A)
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Writeτ2(A)
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—A third example

Instance

(initial)

A $500

B $800

E $0

Schedule
Readτ2(A)

Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Instance

(final)

A $200

B $400

E $300
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—A third example

Instance

(initial)

A $500

B $800

E $0

Schedule
Readτ2(A)

Readτ1(A)
Writeτ1(A)
Readτ1(B)
Writeτ1(B)
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Writeτ2(E)
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Instance

(final)

A $200

B $400

E $300



39/56

An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Non-serial schedule—A third example

Instance
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E $0
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Readτ2(A)
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(final)

A $200

B $400

E $300
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

A serializable schedule (that is non-serial)

Instance

(initial)

A $500

B $800

E $0

Schedule
Readτ2(A)
Writeτ2(A)

Readτ1(A)
Writeτ1(A)

Readτ2(E)
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Readτ1(B)
Writeτ1(B)

Commitτ2
Commitτ1

Instance

(final)

A $600

B $400

E $300
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Instance

(initial)

A $500

B $800

E $0
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τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

A serializable schedule (that is non-serial)

Instance

(initial)

A $500

B $800

E $0

Schedule
Readτ2(A)
Writeτ2(A)

Readτ1(A)
Writeτ1(A)
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An Example of Schedules

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Key observation: Serial schedules

Individual transactions make sense (do not violate consistency):
▶ No balance will ever get negative.

▶ No money disappears or appears out of thin air.
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Guaranteeing Isolation

Simplified point-of-view

▶ A transaction is a thread in a multi-threaded program.

▶ All transactions operate on shared data (the database instance).
▶ We need to coordinate access to this shared data!

In traditional multi-threaded programs:

▶ Use critical sections in which shared data is accessed.

▶ Enforce critical sections with locks (e.g., mutex).

▶ Ensure proper lock usage to avoid deadlocks, . . . .

As all data is shared: should the entire transaction be a single critical section?

What if each transaction locks the system, executes, releases the system?

This will enforce a serial schedule.
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Guaranteeing Isolation

Simplified point-of-view

▶ A transaction is a thread in a multi-threaded program.

▶ All transactions operate on shared data (the database instance).
▶ We need to coordinate access to this shared data!

In traditional multi-threaded programs:

▶ Use critical sections in which shared data is accessed.

▶ Enforce critical sections with locks (e.g., mutex).

▶ Ensure proper lock usage to avoid deadlocks, . . . .

As all data is shared: should the entire transaction be a single critical section?

What if each transaction locks the system, executes, releases the system?

This will enforce a serial schedule and eliminate any concurrency.
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Improving Isolation using Locks

Idea: Use a fine-grained set of locks on database objects.
E.g., accounts, tables, rows, . . . .

In our examples we abstract from details: accounts are database objects.
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Improving Isolation using Locks

Idea: Use a fine-grained set of locks on database objects.
E.g., accounts, tables, rows, . . . .

In our examples we abstract from details: accounts are database objects.

Using fine-grained locks

A transaction τ that wants to access database object O will:

▶ waits until it obtains a lock on O (Lockτ (O)),
▶ then perform its operations on O (e.g., Readτ (O) and Writeτ (O)), and
▶ finally release the lock on O (Releaseτ (O)).
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Improving Isolation using Locks

Idea: Use a fine-grained set of locks on database objects.
E.g., accounts, tables, rows, . . . .

In our examples we abstract from details: accounts are database objects.

Lock-based access solves some issues . . .

Instance

(initial)

A $500

B $800

E $0

Schedule
Readτ1(A)

Readτ2(A)
Writeτ2(A)
Readτ2(E)
Writeτ2(E)
Commitτ2

Writeτ1(A)
Readτ1(B)
Writeτ1(B)
Commitτ1

Instance

(final)

A $900

B $400

E $300
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Idea: Use a fine-grained set of locks on database objects.
E.g., accounts, tables, rows, . . . .

In our examples we abstract from details: accounts are database objects.

Lock-based access solves some issues . . .
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A $500

B $800
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Writeτ1(A)
Releaseτ1(A)
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. . .
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. . .
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Instance

(final)
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B $400

E $300



41/56

Improving Isolation using Locks

Idea: Use a fine-grained set of locks on database objects.
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Idea: Use a fine-grained set of locks on database objects.
E.g., accounts, tables, rows, . . . .

In our examples we abstract from details: accounts are database objects.

Lock-based access solves some issues . . .
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Improving Isolation using Locks

Idea: Use a fine-grained set of locks on database objects.
E.g., accounts, tables, rows, . . . .

In our examples we abstract from details: accounts are database objects.

. . . but not all issues . . .

Instance

(initial)

A $100

B $300

E $0

Schedule
Lockτ1(A)
Readτ1(A)
Writeτ1(A)
Releaseτ1(A)

Lockτ2(A)
Readτ2(A)
Writeτ2(A)
. . .
Commitτ2

. . .
Abortτ1

Instance

(final)

A -$200

B $300

E $300
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. . . but not all issues . . .

Instance

(initial)

A $100

B $300

E $0

Schedule
Lockτ1(A)
Readτ1(A)
Writeτ1(A)
Releaseτ1(A)

Lockτ2(A)
Readτ2(A)
Writeτ2(A)
. . .
Commitτ2

. . .
Abortτ1

Instance

(final)

A -$200

B $300

E $300



41/56
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Improving Isolation using Locks

Idea: Use a fine-grained set of locks on database objects.
E.g., accounts, tables, rows, . . . .

In our examples we abstract from details: accounts are database objects.

. . . and introduces new issues.

Consider two transactions that both want to access Ana and Bo:

τ1 = Lockτ1(A), Lockτ1(B), . . . ; τ2 = Lockτ2(B), Lockτ1(A), . . .

Schedule
Lockτ1(A)

Lockτ2(B)
Lockτ1(B)

Lockτ2(A)

Both transactions will wait forever: a deadlock!
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Both transactions will wait forever: a deadlock!
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Achieving Serializability with Locks

Locking itself does not guarantee serializability .

Some locking protocols (sets of rules on when to use locks) that do guarantee serializability .

Two-phase locking protocol (2PL)

Execution of transaction τ adheres to 2PL if the execution is performed in two phases:

Growing phase during which execution can obtains locks, and not release them; and

Shrinking phase during which execution can release locks, and not obtain them,

and any database object O is only operated on while holding lock Lockτ (O).

Strict 2PL: locks are only released after completion (Commitτ or Abortτ ).

Notice—Nothing to deal with deadlocks.
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Locking itself does not guarantee serializability .

Some locking protocols (sets of rules on when to use locks) that do guarantee serializability .

Two-phase locking protocol (2PL)

Execution of transaction τ adheres to 2PL if the execution is performed in two phases:

Growing phase during which execution can obtains locks, and not release them; and

Shrinking phase during which execution can release locks, and not obtain them,

and any database object O is only operated on while holding lock Lockτ (O).

Strict 2PL: locks are only released after completion (Commitτ or Abortτ ).

Notice—Nothing to deal with deadlocks.
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An Example of 2PL

Consider again the transactions

τ1 = A ≥ 100?,A := A+ 400,B ≥ 700?,B := B− 400;

τ2 = A ≥ 500?,A := A− 300, E := E + 300.

Assumption: Both transactions will succeed (Alice and Bob have sufficient funds)

τ1 = Lockτ1(A), ,Readτ1(B),Writeτ1(B),

Commitτ1 ,Releaseτ1(A),Releaseτ1(B);

τ2 = Lockτ2(E), Lockτ2(A),Readτ2(A),Writeτ2(A),Readτ2(E),Writeτ2(E),

Commitτ2 ,Releaseτ2(A),Releaseτ2(E).

These are all strict 2PL: locks are released after the transactions commit.
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These are all strict 2PL: locks are released after the transactions commit.
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Two-Phase Locking and Deadlocks

Consider the transactions

τ1 = Lockτ1(A), Lockτ1(B),Readτ1(A),Writeτ1(B),Commitτ1 ,Releaseτ1(A),Releaseτ1(B);

τ2 = Lockτ2(B), Lockτ2(A),Readτ2(B),Writeτ2(A),Commitτ2 ,Releaseτ2(A),Releaseτ2(B).

These transactions are strict 2PL.

Some schedules will cause a deadlock

Schedule
Lockτ1(A)

Lockτ2(B)
Lockτ1(B)

Lockτ2(A)

Deadlocks are one of the issues arising from lock contention.
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Dealing with Deadlocks: Pessimistic Approach

Pessimistic: make sure deadlocks cannot happen

Enforce that all transactions obtain their locks in a unique predetermined order.

E.g., first locks on Ana, then Bo, then Celeste, then Dafni, then Elisa, . . . .

Example

Consider the transaction

τ = “if Bo has $500, then move $200 from Bo to Ana”.

Any schedule for τ needs to start with:

Lockτ (Ana), Lockτ (Bo), . . . ,

we even lock Ana if Bo does not have funds.



45/56

Dealing with Deadlocks: Pessimistic Approach

Pessimistic: make sure deadlocks cannot happen
Enforce that all transactions obtain their locks in a unique predetermined order.

E.g., first locks on Ana, then Bo, then Celeste, then Dafni, then Elisa, . . . .

Example

Consider the transaction

τ = “if Bo has $500, then move $200 from Bo to Ana”.

Any schedule for τ needs to start with:

Lockτ (Ana), Lockτ (Bo), . . . ,

we even lock Ana if Bo does not have funds.



45/56

Dealing with Deadlocks: Pessimistic Approach

Pessimistic: make sure deadlocks cannot happen
Enforce that all transactions obtain their locks in a unique predetermined order.

E.g., first locks on Ana, then Bo, then Celeste, then Dafni, then Elisa, . . . .

Example

Consider the transaction

τ = “if Bo has $500, then move $200 from Bo to Ana”.

Any schedule for τ needs to start with:

Lockτ (Ana), Lockτ (Bo), . . . ,

we even lock Ana if Bo does not have funds.



46/56

Dealing with Deadlocks: Optimistic Approach

Optimistic: Optimize for no lock-contention

If a transaction tries to obtain a lock that is already held: abort the transaction entirely .

▶ No need for deadlock detection or prevention.

▶ Very easy to implement.

▶ Minimizes the costs for transactions that are able to commit.

▶ Will perform badly when there is a high amount of lock-contention.
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Practice: Read and Write locks

▶ Locks need to be fine-grained to maximize concurrency.

▶ Concurrency issues only arise when a transaction is writing.

▶ In most workloads: reads are much more frequent than writes.

Goal: prevent writes concurrent with other activity, but minimize cost for reads.

Introduce separate read and write locks

▶ Multiple transactions can hold a lock at the same time if they all hold read locks.
▶ Only one transaction can hold a lock if that transaction holds a write lock.

Result

▶ Many transactions can read at the same time.

▶ Read-write, write-read, and write-write conflicts are prevented.
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The Cost of Serializability

▶ Serializability provides strong isolation guarantees.

▶ Providing these guarantees will impact concurrency

(independent of the implementation mechanism, e.g., locks).

To improve performance, you can give up on serializability!
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Degrees of Isolation in SQL
1

Level Dirty Reads Unrepeatable Read Phantoms

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not Possible Possible Possible

REPEATABLE READ Not Possible Not Possible Possible

SERIALIZABLE Not Possible Not Possible Not Possible

Each level can be defined in terms of a locking protocol.

1

There are excellent papers on this topic! E.g., https://doi.org/10.1145/568271.223785 and
https://doi.org/10.1016/0950-5849(96)01109-3 are recommended.

https://doi.org/10.1145/568271.223785
https://doi.org/10.1016/0950-5849(96)01109-3
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Safe Execution without Locks

Concurrent transaction execution can make sense without isolation.
E.g., one can use application-specific knowledge!

A Banking System

Observe: undoing a withdraw increases balance, undoing deposits decreases balance!

Consider executions in which all steps can:

▶ always withdraw money;

▶ only deposit money after either commit or abort is decided.

These executions guarantee that no account will have a negative balance!
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Ingredients of Sharding in a Resilient Environment

Multi-shard transaction execution of τ requires

Replication of τ among shards.

E.g., a two-phase commit step.

Concurrency control to guarantee consistent execution of τ .
E.g., using locks to prevent concurrent access to accounts.

To One needs computations within a shard and communication between shards.

Fault-tolerant shards

Each shard is a cluster of replicas that can be faulty.

Consensus for each computation within shards.

Cluster-sending for any communication between shards.

Consensus is costly: Minimize its use.
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The Orchestrate-Execute Model for Multi-Shard Transactions

Consider a multi-shard transaction τ :

▶ Processing is broken down into three types of shard-steps: vote, commit, and abort.

▶ Each shard-step is performed via one consensus step.
▶ Transfer control between steps using cluster-sending.

Execution method determines the local operations of a shard-step:

locks, checking conditions, updating state, . . . .

Orchestration method determines how control is transferred between shard-steps:

perform votes, collect votes, decide commit or abort τ .
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Example of the Orchestrate-Execute Model

Shard accounts by first letter of name

τ = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

σ1 at Ca

vote-step

σ2 at Cb
vote commit

vote-step

σ3 at Ca
commit τ

commit-step

σ4 at Ca
abort-step

abort τ



53/56

Example of the Orchestrate-Execute Model

Shard accounts by first letter of name

τ = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

σ1 = “Lockτ (Ana); if Ana has $500, then forward σ2 to Cb (commit vote)

else Releaseτ (Ana) (abort vote).”

σ1 at Ca

vote-step

σ2 at Cb
vote commit

vote-step

σ3 at Ca
commit τ

commit-step

σ4 at Ca
abort-step

abort τ



53/56

Example of the Orchestrate-Execute Model

Shard accounts by first letter of name

τ = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

σ2 = “Lockτ (Bo); if Bo has $200, then add $400 to Bo; Releaseτ (Bo); and

forward σ3 to Ca (commit)

else Releaseτ (Bo) and forward σ4 to Ca (abort).”

σ1 at Ca

vote-step

σ2 at Cb
vote commit

vote-step

σ3 at Ca
commit τ

commit-step

σ4 at Ca
abort-step

abort τ



53/56

Example of the Orchestrate-Execute Model

Shard accounts by first letter of name

τ = “if Ana has $500 and Bo has $200, then

move $400 from Ana to Bo.”

σ3 = “remove $400 from Ana and Releaseτ (Ana).”

σ4 = “Releaseτ (Ana).”

σ1 at Ca

vote-step

σ2 at Cb
vote commit

vote-step

σ3 at Ca
commit τ

commit-step

σ4 at Ca
abort-step
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Resilient Orchestration Methods

Orchestration ≈ two-phase commit, except that shards never fail.

Linear
C1

C2

C3

C4

C5

C6

Vote Vote Vote Vote Commit

Vote-steps in sequence, decide centralized , commit or abort in parallel.
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Orchestration ≈ two-phase commit, except that shards never fail.

Centralized
(root) C1

C2

C3

C4

C5

C6
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Vote
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Vote-steps in parallel, decide centralized , commit or abort in parallel.
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Resilient Orchestration Methods

Orchestration ≈ two-phase commit, except that shards never fail.

Distributed
(root) C1

C2

C3

C4

C5

C6

Root

Vote

Vote Commit

Vote-steps in parallel, decide decentralized , commit or abort in parallel.
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Resilient Execution Methods

Execution updates state and performs concurrency control.
▶ Write uncommitted execution for free:

Due to consensus, shard-steps are performed in sequence on that shard.

▶ Higher isolation levels via two-phase locking:
▶ read uncommitted execution: only write locks;
▶ read committed execution: read locks during steps;
▶ serializable execution: read and write locks.

▶ Blocking locks (with linear orchestration) versus non-blocking locks.



56/56

Evaluation

Isolation-Free execution Lock-based execution

(write uncommitted) Read Uncommitted Read Committed Serializable

unsafe safe blocking non-blocking blocking non-blocking blocking non-blocking

Linear LIFu LIFs LRUb LRUnb LRCb LRCnb LSb LSnb
Centralized CIFu CIFs CRUnb CRCnb CSnb
Distributed DIFu DIFs DRUnb DRCnb DSnb
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Isolation-Free execution Lock-based execution

(write uncommitted) Read Uncommitted Read Committed Serializable
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Isolation-Free execution Lock-based execution
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Isolation-Free execution Lock-based execution

(write uncommitted) Read Uncommitted Read Committed Serializable
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Evaluation

Isolation-Free execution Lock-based execution

(write uncommitted) Read Uncommitted Read Committed Serializable

unsafe safe blocking non-blocking blocking non-blocking blocking non-blocking
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Evaluation

Isolation-Free execution Lock-based execution

(write uncommitted) Read Uncommitted Read Committed Serializable

unsafe safe blocking non-blocking blocking non-blocking blocking non-blocking
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2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Shards

R
u
n
t
i
m
e
(
s
)

Total Runtime

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

·104

Number of Shards

T
h
r
o
u
g
h
p
u
t
(
t
x
n
/s
)

Average Committed Throughput

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

Number of Shards

R
u
n
t
i
m
e
(
s
)

Total Runtime

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

·103

Number of Shards

D
u
r
a
t
i
o
n
(
s
)

Cumulative Duration

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

·104

Number of Shards

T
h
r
o
u
g
h
p
u
t
(
t
x
n
/s
)

Average Throughput

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

·104

Number of Shards

T
h
r
o
u
g
h
p
u
t
(
t
x
n
/s
)

Average Committed Throughput

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
·104

Number of Shards

S
t
e
p
s
p
e
r
S
h
a
r
d

Median Consensus Steps

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

·103

Number of Shards

S
t
e
p
s

Shard-Step Imbalance

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
·104

Number of Shards

S
t
e
p
s
p
e
r
S
h
a
r
d

Median Consensus Steps

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

·103

Number of Shards

S
t
e
p
s

Shard-Step Imbalance

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

·103

Number of Shards

C
o
n
s
t
r
a
i
n
t
s

Constraint Failures

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

·103

Number of Shards

L
o
c
k
s

Failed Locks


