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Introduction to Blockchains: Theory on resilient

fully-replicated systems
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What is a Blockchain?

A resilient tamper-proof append-only sequence of transactions

maintained by many participants.

I Resilient .
High availability via full replication among participants.

I Tamper-proof .

Changes can only be made with majority participation.

I Append-only sequence of transactions.

In database terms: a journal or log.

Basic Blockchains are distributed fully-replicated systems!
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Blockchain technology: Many terms

1. Permissionless versus permissioned.

2. Distributed fully-replicated systems: CAP Theorem.

3. Crash tolerance versus Byzantine fault tolerance.

4. Consensus, broadcast, interactive consistency.

5. Synchronous versus asynchronous communication.

6. Cryptography.

Main focus today

Permissioned, Byzantine Fault tolerance, Asynchronous.
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Membership: Permissionless versus permissioned

Permissionless Participants are not known.

Can provide open membership.

Permissioned Participants are known and ve�ed.

Permissionless Permissioned

Public Blockchains Traditional resilient systems (PBFT, . . . )

Bitcoin ResilientDB

Ethereum HyperLedger

. . . . . .
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Membership: Tamper-proof structures

How is the Blockchain made tamper-proof?

Permissionless Additions and changes cost resources.

Tamper-proof: the majority of resources behave!

h0 p1

T1

h1 p2

T2

h2 p3

T3

Permissioned Additions and changes are authenticated .

Tamper-proof: the majority of participants behave!

S11, . . . , S1p

T1

S21, . . . , S2p

T2

S31, . . . , S3p

T3

In both cases: reliance on strong cryptography!
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Distributed fully-replicated systems

Consistency Does every participant have exactly the same data?

Availability Does the system continuously provide services?

Partitioning Can the system cope with network disturbances?

Theorem (The CAP Theorem)

Can provide at most two-out-of-three of these properties.

CAP Theorem uses narrow definitions!
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The CAP Theorem and Blockchains

Consistency

Availability Partitioning
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The CAP Theorem and Blockchains

Consistency

Availability Partitioning

Permissionless Blockchains

Open membership focuses on Availability and Partitioning.

=⇒ Consistency not guaranteed (e.g., forks).
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The CAP Theorem and Blockchains

Consistency

Availability Partitioning

Permissioned Blockchains

Consistency at all costs.

=⇒ Availability when communication is reliable.
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Consistency: 2PC, 3PC, Paxos, Consensus

Crash

recovery

Crash

resilience

Byzantine

resilience

2PC

3PC

Paxos

Consensus

Resilience −→

C
o
m

p
l
e
x
i
t
y
−
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Consensus in permissioned Blockchains

A consensus algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

CAP: availability, a liveness property.

Non-divergence Non-faulty replicas decide on the same transaction.

CAP: consistency, a safety property.

Blockchains provide client-server services:

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

R4

R3

R2

R1

c T

Consensus

T

T

T

T

o



10/52

Consensus in permissioned Blockchains

A consensus algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

CAP: availability, a liveness property.

Non-divergence Non-faulty replicas decide on the same transaction.

CAP: consistency, a safety property.

Blockchains provide client-server services:

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

R4

R3

R2

R1

c T

Consensus

T

T

T

T

o



10/52

Consensus in permissioned Blockchains

A consensus algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

CAP: availability, a liveness property.

Non-divergence Non-faulty replicas decide on the same transaction.

CAP: consistency, a safety property.

Blockchains provide client-server services:

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

R4

R3

R2

R1

c T

Consensus

T

T

T

T

o



11/52

From consensus to a consistent Blockchain

Reminder: append-only sequence of transactions.

1. Decide on transactions in rounds.

2. In round ρ, use consensus to select a client transaction T .

3. Append T as the ρ-th entry to the Blockchain.

4. Execute T as the ρ-th entry, inform client.

Consistent state: linearizable order and deterministic execution

On identical inputs, execution of transactions at all non-faulty

replicas must produce identical outputs.
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Byzantine Broadcast (Generals)

Assume a replica G is the general and holds transaction T .

A Byzantine broadcast algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Dependence If the general G is non-faulty,

then non-faulty replicas will decide on T .

R3

R2

R1

G T

Broadcast

T ′
T ′
T ′
T ′

(T ′ = T if the general G is non-faulty).
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Interactive consistency

Assume n replicas and each replica Ri holds a transaction Ti .

Termination Each non-faulty replica decides on n transactions.

Non-divergence Non-faulty replicas decide on the same transactions.

Dependence If replica Rj is non-faulty,

then non-faulty replicas will decide on Tj .

R4

R3

R2

R1

T4

T3

T2

T1

Interactive

consistency

[T1, T2,é, T4]

[T1, T2,é, T4]

[T1, T2,é, T4]

[T1, T2,é, T4]

(As R3 is faulty: é can be anything)
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Theory of Byzantine systems

Many theoretical results!

1. Failure model: crashes and Byzantine failures.

2. Synchronous versus asynchronous communication.

3. Digital signatures versus authenticated communication.

4. Lower bounds on communication (phases, messages).

5. Connectivity of the replicas and quality of the network.
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Failure model: Crashes and Byzantine failures

Crash Participant stops participating in the system.

Byzantine Participant behaves arbitrary.

Participants can be coordinated malicious.

We need assumptions!

If all participants crash or are malicious, no service can be provided.

Permissionless Permissioned

Cryptographic primitives Cryptographic primitives

Majority of resources Majority of participants
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Synchronous versus asynchronous communication

Synchronous Reliable communication with bounded delays.

Asynchronous Unreliable communication:

message loss, arbitrary delays, duplications, . . .

Theorem (Fisher, Lynch, and Paterson)

There exists no asynchronous 1-crash-resilient consensus algorithm.

Asynchronous consensus

Assuming synchronous communication is o�en not practical.

Termination Reliable communication/probabilistic.

Non-divergence Always guaranteed.
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Digital signatures versus authenticated communication

I Digital signatures via public-key cryptography .

Byzantine replicas cannot tamper with forwarded messages.

I Authenticated communication via message authentication codes.

Byzantine replicas are only able to impersonate each other.

Cannot impersonate non-faulty replicas.

Theorem (Pease, Shostak, and Lamport)

Assume a system with n replicas of which at most f are Byzantine.

1. In general, broadcast protocols require n > 3f.
2. Synchronous communication and digital signatures: n > f.

Bounds for consensus: response via majority votes

For clients to learn outcome, we require at least n > 2f.
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Lower bounds on communication (phases, messages)

Theorem (Fisher and Lynch; Dolev, Reischuk, and Strong)

Assume a system with n replicas of which at most f can be Byzantine.

1. Consensus: worst-case Ω (f + 1) phases of communication.

2. Optimistic Broadcasts: Ω (t + 2) phases if t ≤ f failures happen.

Theorem (Dolev and Reischuk)

Assume a system with n replicas of which at most f can be Byzantine.
Any broadcast protocol using digital signatures requires:

1. Ω (nf) digital signatures;

2. Ω
(
n + f2

)
messages.
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Connectivity of the replicas and quality of the network

Theorem (Dolev)

Assume a system with n replicas of which at most f can be Byzantine.
Broadcast: the network must stay connected when removing 2f replicas.

Network assumptions in practice

I Clique: direct communication between all replica pairs.

I Gossip: needs some network quality.
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Theory of Byzantine systems: Summary

Limitations of practical consensus algorithm:

I Dealing with f malicious failures requires n > 3f replicas.

I Worst-case: at least Ω (f + 1) phases of communication.

I Worst-case: at least Ω (nf) signatures and Ω
(
n + f2

)
messages.

I Termination: reliable communication

I Between most replicas;

I Communication with bounded-delay.
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A practical consensus protocol: Pbft
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Pbft: Practical Byzantine Fault Tolerance

Primary Coordinates consensus: propose transactions to replicate.

Backup Accept transactions and verifies behavior of primary.

g 2 2 2 . . . 2
Client Primary Replica Replica Replica

Request T

Propose T

Result of T

Replication and verification
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Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

〈T 〉c .
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Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare

Prepare Commit Inform

PrePrepare(〈T 〉c, v, ρ).
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Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare Prepare

Commit Inform

If receive PrePrepare message m: Prepare(m).
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Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare Prepare Commit

Inform

If n − f identical Prepare(m) messages: Commit(m).
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Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

If n − f identical Commit(m) messages: execute, Inform(〈T 〉c, ρ, r).
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Pbft: Normal-case consensus

Theorem

If the primary is non-faulty and communication is reliable,
then the normal-case of Pbft ensures consensus on T in round ρ.

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

R3

R2

R1

P

c1

c2

PrePrepare Prepare Commit Inform
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then the normal-case of Pbft ensures consensus on T in round ρ.

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

R3

R2

R1

P

c1

c2

What to do?

PrePrepare Prepare Commit Inform
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Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas Ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci , v, ρ),
then 〈T1〉c1

= 〈T2〉c2
.

Proof.

Replica Ri commits to mi :

Ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
, 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f.
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Pbft: Primary failure

Primary P is faulty, ignores R3

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

Primary P is non-faulty, R3 pretends to be ignored

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform
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Pbft: Detectable primary failures

If the primary behaves bad to > f non-faulty replicas,

then failure of the primary is detectable.

Replacing the primary: view-change at replica R

1. R detects failure of the current primary P .

2. R chooses a new primary P ′ (the next replica).

3. R provides P ′ with its current state.

4. P ′ proposes a new view .

5. If the new view is valid, then R switches to this view.
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Pbft: A view-change in view v

P

R2

R1

P ′

ViewChange

NewView Move to view v + 1

Send ViewChange(E, v) with E all prepared transactions.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.
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Pbft: A view-change in view v

P

R2

R1

P ′

ViewChange NewView

Move to view v + 1

If n − f valid ViewChange(E, v) messages: NewView(v + 1, E,N).

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.
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Pbft: A view-change in view v

P

R2

R1

P ′

ViewChange NewView Move to view v + 1

Move to view v + 1 if NewView(v + 1, E,N) is valid.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.



29/52

Pbft: A property of view-changes when n > 3f
Theorem (Castro et al.)

Let NewView(v + 1, E,N) be a well-formed NewView message.
If a set S of n − 2f non-faulty replicas commi�ed to m,
then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f i� n ≤ 3f.
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Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of good primaries.

Worst-case: replacements until communication becomes reliable.
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Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of good primaries.

Worst-case: replacements until communication becomes reliable.
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Other consensus protocols: Go beyond Pbft
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Synchronous communication Ë
Using authenticated channels Ë Ë
Multi-round reasoning Ë Ë
Speculative execution Ë Ë
Randomized primary election Ë Ë
Threshold signatures Ë
Improved reliability Ë Ë
Continuous primary replacement Ë
Per-round checkpoints Ë
Trusted components Ë
Using sub-quorums Ë Ë
Geo-scale clustering Ë
Consensus parallelization Ë Ë
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The cluster-sending problem
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Vision: Resilient high-performance data processing

2

Europe

2

2
2

2ë

America

2

2
2

2

CrashedMalicious

Requirement for geo-scale aware sharding

Fault-tolerant communication between Byzantine clusters!
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The need for cluster-sending

Definition

The cluster-sending problem is the problem of sending a value v from

C1 to C2 such that:

1. all non-faulty replicas in C2 receive the value v ;

2. only if all non-faulty replicas in C1 agree upon sending the value

v to C2 will non-faulty replicas in C2 receive v ;

3. all non-faulty replicas in C1 can confirm that the value v was

received.

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1)(f2 + 1) ≈ f1 × f2 messages.
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Global versus local communication

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1)(f2 + 1) ≈ f1 × f2 messages.

Ping round-trip times (ms) Bandwidth (Mbit/s)
OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977
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Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.
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Lower bounds for cluster-sending: Results

Theorem (Cluster-sending lower bound, crash failures)

Assume n1 ≥ n2 and let

q = (f1 + 1) div nf2;

r = (f1 + 1)modnf2;

σ = qn2 + r + f2 sgn r .

We need to exchange at least σ messages to do cluster-sending.

I Similar results for n1 ≤ n2.

I If n1 ≈ n2: at least f1 + f2 + 1 messages.
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Cluster-sending with Byzantine failures

Theorem (Cluster-sending lower bound, Byzantine failures)

Assume n1 ≥ n2 and let

q = (2f1 + 1) div nf2;

r = (f1 + 1)modnf2;

σ = qn2 + r + f2 sgn r .

We need to exchange at least σ digital signatures to do cluster-sending.

I Similar results for n1 ≤ n2.

I If n1 ≈ n2: at least 2f1 + f2 + 1 digital signatures.

I Only authenticated communication: much harder!
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An optimal cluster-sending algorithm (crash failures)

Protocol for the sending cluster C1, n1 ≥ n2, n1 ≥ σ :
1: Choose replicas P ⊆ C1 with |P | = σ .

2: Choose a n2-partition partition(P) of P.

3: for P ∈ partition(P) do
4: Choose replicas Q ⊆ C2 with |Q | = |P |.
5: Choose a bijection b : P → Q.

6: for R1 ∈ P do
7: Send v from R1 to b(R1).

Protocol for the receiving cluster C2:
8: event R2 ∈ C2 receives w from a replica in C1 do
9: Broadcast w to all replicas in C2.

10: event R′
2
∈ C2 receives w from a replica in C2 do

11: R′
2

considers w received .
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An optimal cluster-sending algorithm—visualized

Crash failures, n1 = n2 = 4, f1 = f2 = 1, σ = 3

R1,4

R1,3

R1,2

R1,1

R2,4

R2,3

R2,2

R2,1

Decide on

sending v
C1

C2

Received v

Similar algorithm can deal with Byzantine failures (σ = 4).
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Conclusion

E�icient cluster-sending is possible.

Ongoing work: Initial results

I Paper: DISC 2019 (doi:10.4230/LIPIcs.DISC.2019.45).

I Technical Report: https://arxiv.org/abs/1908.01455.

https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://arxiv.org/abs/1908.01455
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The Byzantine learner problem
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Vision: Specializing for read-only workloads

Read-only workloads

Updates

(e.g., write transactions)









ë

Malicious

2Analytics

2Data Provenance

2Machine Learning

2Visualization

Requirement for data-hungry read-only workloads

Stream all data updates with low cost for all replicas involved.

Cluster-sending? Optimal for single messages, not for streams!
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The need for Byzantine learning

Definition

Let C be a cluster deciding on a sequence of transactions.

The Byzantine learning problem is the problem of sending the decided

transactions from C to a learner L such that:

I the L will eventually receive all decided transactions;

I the L will only receive decided transactions.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in C.
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Background: Information dispersal algorithms

Definition

Let v be a value with storage size ‖v ‖.
An information dispersal algorithm can encode v in n pieces v ′

such that v can be decoded from every set of n − f such pieces.

The algorithm is optimal if each piece v ′ has size d‖v ‖/(n − f)e.
In this case, the n − f pieces necessary for decoding have total size:

(n − f)
⌈
‖v ‖
(n − f)

⌉
≈ ‖v ‖.

Theorem (Rabin)

The IDA information dispersal algorithm is optimal.
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The delayed-replication algorithm

Idea: C sends a Blockchain to learner L

1. Partition the Blockchain in sequences S of n transactions.

2. Replica Ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica Ri ∈ C sends Si with a checksum Ci(S) of S to L.

4. L receives at least n − f distinct pieces and decodes S.

Observations (n > 2f)

I Each sequence S has size ‖S‖ = Ω (n).
I Each piece Si has size ‖Si ‖ = d‖S‖/(n − f)e.
I Learner L receives at most B = n(d‖S‖/(n − f)e + c) bytes:

B ≤ n
(
‖S‖
n − f

+ 1 + c
)
< 2‖S‖ + n + nc = O (‖S‖ + cn) .
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Communication by the delayed-replication algorithm

B

R3

R2

R1

L

1 2 3 4 5 6 7 8 9 10 11 12

Consensus decisions (transactions) −→

No dispersal First 4 transactions Second 4 transactions
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Decoding S using simple checksums (n > 2f)

I Use checksums hash(S).
I The n − f non-faulty replicas will provide correct pieces.

I At least n − f > f messages with correct checksums.

I Received some forged pieces?

I Decoding yields S ′.
I hash(S ′) , hash(S).
I Use other pieces.

I Compute intensive for learner.
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Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by R5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Construct a Merkle tree for pieces S0, . . . , S7.
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Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by R5).
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(S2)

h3

(S3)
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(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Determine the path from root to S5.
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Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by R5).
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Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].
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Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by R5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Enables recognizing forged pieces before decoding.
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Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner L, replica R, and decided transactions T . The
delayed-replication algorithm with tree checksums guarantees

1. L will learn T ;

2. L will receive at most |T | messages with a total size of

O

(
‖T ‖

( n
n − f

)
+ |T | log n

)
= O (‖T ‖ + |T | log n) ;

3. L will only need at most |T |/n decode steps;

4. R will sent at most |T |/n messages to L of size

O

(
‖T ‖

n − f
+
|T | log n

n

)
= O

(
‖T ‖ + |T | log n

n

)
.
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Conclusion

E�icient Byzantine learning is possible.

Blockchain applications

I Low-cost checkpoint protocols.

I Scalable storage for resilient systems.

Ongoing work: Initial results

I Paper: ICDT 2020.
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About us

I Jelle Hellings https://jhellings.nl/.

I
Creativity Unfolded

ExpoLab https://expolab.org/.

I ResilientDB
Security, Privacy Reloaded

https://resilientdb.com/.

https://jhellings.nl/
https://expolab.org/
https://resilientdb.com/
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