
1/52

Tutorial:

An In-Depth Look at BFT Consensus in

Blockchains: Challenges and Opportunities

(Theory)

Suyash Gupta Jelle Hellings

Sajjad Rahnama Mohammad Sadoghi

Exploratory Systems Lab,

Department of Computer Science,

University of California, Davis, CA, USA

Creativity Unfolded
ExpoLab ResilientDB

Security, Privacy Reloaded

2/52

Introduction to Blockchains: Theory on resilient

fully-replicated systems

3/52

What is a Blockchain?

A resilient tamper-proof append-only sequence of transactions

maintained by many participants.

I Resilient .
High availability via full replication among participants.

I Tamper-proof .

Changes can only be made with majority participation.

I Append-only sequence of transactions.

In database terms: a journal or log.

Basic Blockchains are distributed fully-replicated systems!

3/52

What is a Blockchain?

A resilient tamper-proof append-only sequence of transactions

maintained by many participants.

I Resilient .
High availability via full replication among participants.

I Tamper-proof .

Changes can only be made with majority participation.

I Append-only sequence of transactions.

In database terms: a journal or log.

Basic Blockchains are distributed fully-replicated systems!

3/52

What is a Blockchain?

A resilient tamper-proof append-only sequence of transactions

maintained by many participants.

I Resilient .
High availability via full replication among participants.

I Tamper-proof .

Changes can only be made with majority participation.

I Append-only sequence of transactions.

In database terms: a journal or log.

Basic Blockchains are distributed fully-replicated systems!

3/52

What is a Blockchain?

A resilient tamper-proof append-only sequence of transactions

maintained by many participants.

I Resilient .
High availability via full replication among participants.

I Tamper-proof .

Changes can only be made with majority participation.

I Append-only sequence of transactions.

In database terms: a journal or log.

Basic Blockchains are distributed fully-replicated systems!

3/52

What is a Blockchain?

A resilient tamper-proof append-only sequence of transactions

maintained by many participants.

I Resilient .
High availability via full replication among participants.

I Tamper-proof .

Changes can only be made with majority participation.

I Append-only sequence of transactions.

In database terms: a journal or log.

Basic Blockchains are distributed fully-replicated systems!

4/52

Blockchain technology: Many terms

1. Permissionless versus permissioned.

2. Distributed fully-replicated systems: CAP Theorem.

3. Crash tolerance versus Byzantine fault tolerance.

4. Consensus, broadcast, interactive consistency.

5. Synchronous versus asynchronous communication.

6. Cryptography.

Main focus today

Permissioned, Byzantine Fault tolerance, Asynchronous.

5/52

Membership: Permissionless versus permissioned

Permissionless Participants are not known.

Can provide open membership.

Permissioned Participants are known and ve�ed.

Permissionless Permissioned

Public Blockchains Traditional resilient systems (PBFT, . . .)

Bitcoin ResilientDB

Ethereum HyperLedger

.

6/52

Membership: Tamper-proof structures

How is the Blockchain made tamper-proof?

Permissionless Additions and changes cost resources.

Tamper-proof: the majority of resources behave!

h0 p1

T1

h1 p2

T2

h2 p3

T3

Permissioned Additions and changes are authenticated .

Tamper-proof: the majority of participants behave!

S11, . . . , S1p

T1

S21, . . . , S2p

T2

S31, . . . , S3p

T3

In both cases: reliance on strong cryptography!

7/52

Distributed fully-replicated systems

Consistency Does every participant have exactly the same data?

Availability Does the system continuously provide services?

Partitioning Can the system cope with network disturbances?

Theorem (The CAP Theorem)

Can provide at most two-out-of-three of these properties.

CAP Theorem uses narrow definitions!

7/52

Distributed fully-replicated systems

Consistency Does every participant have exactly the same data?

Availability Does the system continuously provide services?

Partitioning Can the system cope with network disturbances?

Theorem (The CAP Theorem)

Can provide at most two-out-of-three of these properties.

CAP Theorem uses narrow definitions!

8/52

The CAP Theorem and Blockchains

Consistency

Availability Partitioning

8/52

The CAP Theorem and Blockchains

Consistency

Availability Partitioning

Permissionless Blockchains

Open membership focuses on Availability and Partitioning.

=⇒ Consistency not guaranteed (e.g., forks).

8/52

The CAP Theorem and Blockchains

Consistency

Availability Partitioning

Permissioned Blockchains

Consistency at all costs.

=⇒ Availability when communication is reliable.

9/52

Consistency: 2PC, 3PC, Paxos, Consensus

Crash

recovery

Crash

resilience

Byzantine

resilience

2PC

3PC

Paxos

Consensus

Resilience −→

C
o
m

p
l
e
x
i
t
y
−
→

10/52

Consensus in permissioned Blockchains

A consensus algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

CAP: availability, a liveness property.

Non-divergence Non-faulty replicas decide on the same transaction.

CAP: consistency, a safety property.

Blockchains provide client-server services:

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

R4

R3

R2

R1

c T

Consensus

T

T

T

T

o

10/52

Consensus in permissioned Blockchains

A consensus algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

CAP: availability, a liveness property.

Non-divergence Non-faulty replicas decide on the same transaction.

CAP: consistency, a safety property.

Blockchains provide client-server services:

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

R4

R3

R2

R1

c T

Consensus

T

T

T

T

o

10/52

Consensus in permissioned Blockchains

A consensus algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

CAP: availability, a liveness property.

Non-divergence Non-faulty replicas decide on the same transaction.

CAP: consistency, a safety property.

Blockchains provide client-server services:

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

R4

R3

R2

R1

c T

Consensus

T

T

T

T

o

11/52

From consensus to a consistent Blockchain

Reminder: append-only sequence of transactions.

1. Decide on transactions in rounds.

2. In round ρ, use consensus to select a client transaction T .

3. Append T as the ρ-th entry to the Blockchain.

4. Execute T as the ρ-th entry, inform client.

Consistent state: linearizable order and deterministic execution

On identical inputs, execution of transactions at all non-faulty

replicas must produce identical outputs.

12/52

Byzantine Broadcast (Generals)

Assume a replica G is the general and holds transaction T .

A Byzantine broadcast algorithm is an algorithm satisfying:

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Dependence If the general G is non-faulty,

then non-faulty replicas will decide on T .

R3

R2

R1

G T

Broadcast

T ′
T ′
T ′
T ′

(T ′ = T if the general G is non-faulty).

13/52

Interactive consistency

Assume n replicas and each replica Ri holds a transaction Ti .

Termination Each non-faulty replica decides on n transactions.

Non-divergence Non-faulty replicas decide on the same transactions.

Dependence If replica Rj is non-faulty,

then non-faulty replicas will decide on Tj .

R4

R3

R2

R1

T4

T3

T2

T1

Interactive

consistency

[T1, T2,é, T4]

[T1, T2,é, T4]

[T1, T2,é, T4]

[T1, T2,é, T4]

(As R3 is faulty: é can be anything)

14/52

Theory of Byzantine systems

Many theoretical results!

1. Failure model: crashes and Byzantine failures.

2. Synchronous versus asynchronous communication.

3. Digital signatures versus authenticated communication.

4. Lower bounds on communication (phases, messages).

5. Connectivity of the replicas and quality of the network.

15/52

Failure model: Crashes and Byzantine failures

Crash Participant stops participating in the system.

Byzantine Participant behaves arbitrary.

Participants can be coordinated malicious.

We need assumptions!

If all participants crash or are malicious, no service can be provided.

Permissionless Permissioned

Cryptographic primitives Cryptographic primitives

Majority of resources Majority of participants

16/52

Synchronous versus asynchronous communication

Synchronous Reliable communication with bounded delays.

Asynchronous Unreliable communication:

message loss, arbitrary delays, duplications, . . .

Theorem (Fisher, Lynch, and Paterson)

There exists no asynchronous 1-crash-resilient consensus algorithm.

Asynchronous consensus

Assuming synchronous communication is o�en not practical.

Termination Reliable communication/probabilistic.

Non-divergence Always guaranteed.

16/52

Synchronous versus asynchronous communication

Synchronous Reliable communication with bounded delays.

Asynchronous Unreliable communication:

message loss, arbitrary delays, duplications, . . .

Theorem (Fisher, Lynch, and Paterson)

There exists no asynchronous 1-crash-resilient consensus algorithm.

Asynchronous consensus

Assuming synchronous communication is o�en not practical.

Termination Reliable communication/probabilistic.

Non-divergence Always guaranteed.

17/52

Digital signatures versus authenticated communication

I Digital signatures via public-key cryptography .

Byzantine replicas cannot tamper with forwarded messages.

I Authenticated communication via message authentication codes.

Byzantine replicas are only able to impersonate each other.

Cannot impersonate non-faulty replicas.

Theorem (Pease, Shostak, and Lamport)

Assume a system with n replicas of which at most f are Byzantine.

1. In general, broadcast protocols require n > 3f.
2. Synchronous communication and digital signatures: n > f.

Bounds for consensus: response via majority votes

For clients to learn outcome, we require at least n > 2f.

17/52

Digital signatures versus authenticated communication

I Digital signatures via public-key cryptography .

Byzantine replicas cannot tamper with forwarded messages.

I Authenticated communication via message authentication codes.

Byzantine replicas are only able to impersonate each other.

Cannot impersonate non-faulty replicas.

Theorem (Pease, Shostak, and Lamport)

Assume a system with n replicas of which at most f are Byzantine.

1. In general, broadcast protocols require n > 3f.
2. Synchronous communication and digital signatures: n > f.

Bounds for consensus: response via majority votes

For clients to learn outcome, we require at least n > 2f.

18/52

Lower bounds on communication (phases, messages)

Theorem (Fisher and Lynch; Dolev, Reischuk, and Strong)

Assume a system with n replicas of which at most f can be Byzantine.

1. Consensus: worst-case Ω (f + 1) phases of communication.

2. Optimistic Broadcasts: Ω (t + 2) phases if t ≤ f failures happen.

Theorem (Dolev and Reischuk)

Assume a system with n replicas of which at most f can be Byzantine.
Any broadcast protocol using digital signatures requires:

1. Ω (nf) digital signatures;

2. Ω
(
n + f2

)
messages.

18/52

Lower bounds on communication (phases, messages)

Theorem (Fisher and Lynch; Dolev, Reischuk, and Strong)

Assume a system with n replicas of which at most f can be Byzantine.

1. Consensus: worst-case Ω (f + 1) phases of communication.

2. Optimistic Broadcasts: Ω (t + 2) phases if t ≤ f failures happen.

Theorem (Dolev and Reischuk)

Assume a system with n replicas of which at most f can be Byzantine.
Any broadcast protocol using digital signatures requires:

1. Ω (nf) digital signatures;

2. Ω
(
n + f2

)
messages.

19/52

Connectivity of the replicas and quality of the network

Theorem (Dolev)

Assume a system with n replicas of which at most f can be Byzantine.
Broadcast: the network must stay connected when removing 2f replicas.

Network assumptions in practice

I Clique: direct communication between all replica pairs.

I Gossip: needs some network quality.

19/52

Connectivity of the replicas and quality of the network

Theorem (Dolev)

Assume a system with n replicas of which at most f can be Byzantine.
Broadcast: the network must stay connected when removing 2f replicas.

Network assumptions in practice

I Clique: direct communication between all replica pairs.

I Gossip: needs some network quality.

20/52

Theory of Byzantine systems: Summary

Limitations of practical consensus algorithm:

I Dealing with f malicious failures requires n > 3f replicas.

I Worst-case: at least Ω (f + 1) phases of communication.

I Worst-case: at least Ω (nf) signatures and Ω
(
n + f2

)
messages.

I Termination: reliable communication

I Between most replicas;

I Communication with bounded-delay.

21/52

A practical consensus protocol: Pbft

22/52

Pbft: Practical Byzantine Fault Tolerance

Primary Coordinates consensus: propose transactions to replicate.

Backup Accept transactions and verifies behavior of primary.

g 2 2 2 . . . 2
Client Primary Replica Replica Replica

Request T

Propose T

Result of T

Replication and verification

23/52

Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

〈T 〉c .

23/52

Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare

Prepare Commit Inform

PrePrepare(〈T 〉c, v, ρ).

23/52

Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare Prepare

Commit Inform

If receive PrePrepare message m: Prepare(m).

23/52

Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare Prepare Commit

Inform

If n − f identical Prepare(m) messages: Commit(m).

23/52

Pbft: Normal-case protocol in view v

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

If n − f identical Commit(m) messages: execute, Inform(〈T 〉c, ρ, r).

24/52

Pbft: Normal-case consensus

Theorem

If the primary is non-faulty and communication is reliable,
then the normal-case of Pbft ensures consensus on T in round ρ.

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

R3

R2

R1

P

c1

c2

PrePrepare Prepare Commit Inform

24/52

Pbft: Normal-case consensus

Theorem

If the primary is non-faulty and communication is reliable,
then the normal-case of Pbft ensures consensus on T in round ρ.

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

R3

R2

R1

P

c1

c2

What to do?

PrePrepare Prepare Commit Inform

24/52

Pbft: Normal-case consensus

Theorem

If the primary is non-faulty and communication is reliable,
then the normal-case of Pbft ensures consensus on T in round ρ.

Example (Byzantine primary, n = 4, f = 1, n − f = 3)

R3

R2

R1

P

c1

c2

PrePrepare Prepare Commit Inform

25/52

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas Ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci , v, ρ),
then 〈T1〉c1

= 〈T2〉c2
.

Proof.

Replica Ri commits to mi :

Ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
, 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f.

25/52

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas Ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci , v, ρ),
then 〈T1〉c1

= 〈T2〉c2
.

Proof.

Replica Ri commits to mi :

Ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
, 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f.

25/52

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas Ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci , v, ρ),
then 〈T1〉c1

= 〈T2〉c2
.

Proof.

Replica Ri commits to mi :

Ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
, 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f.

25/52

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas Ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci , v, ρ),
then 〈T1〉c1

= 〈T2〉c2
.

Proof.

Replica Ri commits to mi :

Ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
, 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f.

25/52

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas Ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci , v, ρ),
then 〈T1〉c1

= 〈T2〉c2
.

Proof.

Replica Ri commits to mi :

Ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
, 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f

i� 2n − 4f ≤ n − f i� n ≤ 3f.

25/52

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas Ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci , v, ρ),
then 〈T1〉c1

= 〈T2〉c2
.

Proof.

Replica Ri commits to mi :

Ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
, 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f

i� n ≤ 3f.

25/52

Pbft: A normal-case property when n > 3f
Theorem (Castro et al.)

If replicas Ri , i ∈ {1, 2}, commit to mi = PrePrepare(〈Ti〉ci , v, ρ),
then 〈T1〉c1

= 〈T2〉c2
.

Proof.

Replica Ri commits to mi :

Ri

n − f messages Prepare(mi)

Bi

Fi

≥ n − 2f non-faulty

≤ f faulty

If 〈T1〉c1
, 〈T2〉c2

, then B1 ∩ B2 = ∅ and |B1 ∪ B2 | ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f i� n ≤ 3f.

26/52

Pbft: Primary failure

Primary P is faulty, ignores R3

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

Primary P is non-faulty, R3 pretends to be ignored

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

26/52

Pbft: Primary failure

Primary P is faulty, ignores R3

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

Primary P is non-faulty, R3 pretends to be ignored

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

26/52

Pbft: Primary failure

Primary P is faulty, ignores R3

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

Primary P is non-faulty, R3 pretends to be ignored

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

26/52

Pbft: Primary failure

Primary P is faulty, ignores R3

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

Primary P is non-faulty, R3 pretends to be ignored

R3

R2

R1

P

c T

PrePrepare Prepare Commit Inform

27/52

Pbft: Detectable primary failures

If the primary behaves bad to > f non-faulty replicas,

then failure of the primary is detectable.

Replacing the primary: view-change at replica R

1. R detects failure of the current primary P .

2. R chooses a new primary P ′ (the next replica).

3. R provides P ′ with its current state.

4. P ′ proposes a new view .

5. If the new view is valid, then R switches to this view.

28/52

Pbft: A view-change in view v

P

R2

R1

P ′

ViewChange

NewView Move to view v + 1

Send ViewChange(E, v) with E all prepared transactions.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.

28/52

Pbft: A view-change in view v

P

R2

R1

P ′

ViewChange NewView

Move to view v + 1

If n − f valid ViewChange(E, v) messages: NewView(v + 1, E,N).

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.

28/52

Pbft: A view-change in view v

P

R2

R1

P ′

ViewChange NewView Move to view v + 1

Move to view v + 1 if NewView(v + 1, E,N) is valid.

I E contains n − f valid ViewChange messages.

I N contains no-op proposals for missing rounds.

29/52

Pbft: A property of view-changes when n > 3f
Theorem (Castro et al.)

Let NewView(v + 1, E,N) be a well-formed NewView message.
If a set S of n − 2f non-faulty replicas commi�ed to m,
then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f i� n ≤ 3f.

29/52

Pbft: A property of view-changes when n > 3f
Theorem (Castro et al.)

Let NewView(v + 1, E,N) be a well-formed NewView message.
If a set S of n − 2f non-faulty replicas commi�ed to m,
then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f i� n ≤ 3f.

29/52

Pbft: A property of view-changes when n > 3f
Theorem (Castro et al.)

Let NewView(v + 1, E,N) be a well-formed NewView message.
If a set S of n − 2f non-faulty replicas commi�ed to m,
then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f i� n ≤ 3f.

29/52

Pbft: A property of view-changes when n > 3f
Theorem (Castro et al.)

Let NewView(v + 1, E,N) be a well-formed NewView message.
If a set S of n − 2f non-faulty replicas commi�ed to m,
then E contains a ViewChange message preparing m.

Proof.

The ViewChange messages in E:

n − f messages ViewChange(E, v)

B

F

≥ n − 2f non-faulty

≤ f faulty

if S ∩ B = ∅, then |S ∪ B| ≥ 2(n − 2f).

2(n − 2f) ≤ n − f i� 2n − 4f ≤ n − f i� n ≤ 3f.

30/52

Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of good primaries.

Worst-case: replacements until communication becomes reliable.

30/52

Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of good primaries.

Worst-case: replacements until communication becomes reliable.

30/52

Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of good primaries.

Worst-case: replacements until communication becomes reliable.

30/52

Pbft: Further dealing with failures

1. Undetected failures: e.g., ignored replicas.

At least n − 2f > f non-faulty replicas participate: checkpoints.

2. Detected failures: primary replacement.

Worst-case: a sequence of f view-changes (Ω (f) phases).

3. View-change cost : includes all previous transactions!

Checkpoints: view-change includes last successful checkpoint.

4. Unreliable communication: replacement of good primaries.

Worst-case: replacements until communication becomes reliable.

31/52

Other consensus protocols: Go beyond Pbft

P
b
f
t

Z
y
z
z
y
v
a

H
o
t
S
t
u
f
f

A
l
g
o
r
a
n
d

R
B
F
T

S
y
n
B
F
T

C
h
e
a
p
B
F
T

P
o
E

G
e
o
B
F
T

M
u
l
t
i
B
F
T

Synchronous communication Ë
Using authenticated channels Ë Ë
Multi-round reasoning Ë Ë
Speculative execution Ë Ë
Randomized primary election Ë Ë
Threshold signatures Ë
Improved reliability Ë Ë
Continuous primary replacement Ë
Per-round checkpoints Ë
Trusted components Ë
Using sub-quorums Ë Ë
Geo-scale clustering Ë
Consensus parallelization Ë Ë

32/52

The cluster-sending problem

33/52

Vision: Resilient high-performance data processing

2

Europe

2

2
2

2ë

America

2

2
2

2

CrashedMalicious

Requirement for geo-scale aware sharding

Fault-tolerant communication between Byzantine clusters!

34/52

The need for cluster-sending

Definition

The cluster-sending problem is the problem of sending a value v from

C1 to C2 such that:

1. all non-faulty replicas in C2 receive the value v ;

2. only if all non-faulty replicas in C1 agree upon sending the value

v to C2 will non-faulty replicas in C2 receive v ;

3. all non-faulty replicas in C1 can confirm that the value v was

received.

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1)(f2 + 1) ≈ f1 × f2 messages.

35/52

Global versus local communication

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1)(f2 + 1) ≈ f1 × f2 messages.

Ping round-trip times (ms) Bandwidth (Mbit/s)
OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977

36/52

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

36/52

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

36/52

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

36/52

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

36/52

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

36/52

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

37/52

Lower bounds for cluster-sending: Results

Theorem (Cluster-sending lower bound, crash failures)

Assume n1 ≥ n2 and let

q = (f1 + 1) div nf2;

r = (f1 + 1)modnf2;

σ = qn2 + r + f2 sgn r .

We need to exchange at least σ messages to do cluster-sending.

I Similar results for n1 ≤ n2.

I If n1 ≈ n2: at least f1 + f2 + 1 messages.

38/52

Cluster-sending with Byzantine failures

Theorem (Cluster-sending lower bound, Byzantine failures)

Assume n1 ≥ n2 and let

q = (2f1 + 1) div nf2;

r = (f1 + 1)modnf2;

σ = qn2 + r + f2 sgn r .

We need to exchange at least σ digital signatures to do cluster-sending.

I Similar results for n1 ≤ n2.

I If n1 ≈ n2: at least 2f1 + f2 + 1 digital signatures.

I Only authenticated communication: much harder!

39/52

An optimal cluster-sending algorithm (crash failures)

Protocol for the sending cluster C1, n1 ≥ n2, n1 ≥ σ :
1: Choose replicas P ⊆ C1 with |P | = σ .

2: Choose a n2-partition partition(P) of P.

3: for P ∈ partition(P) do
4: Choose replicas Q ⊆ C2 with |Q | = |P |.
5: Choose a bijection b : P → Q.

6: for R1 ∈ P do
7: Send v from R1 to b(R1).

Protocol for the receiving cluster C2:
8: event R2 ∈ C2 receives w from a replica in C1 do
9: Broadcast w to all replicas in C2.

10: event R′
2
∈ C2 receives w from a replica in C2 do

11: R′
2

considers w received .

40/52

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = n2 = 4, f1 = f2 = 1, σ = 3

R1,4

R1,3

R1,2

R1,1

R2,4

R2,3

R2,2

R2,1

Decide on

sending v
C1

C2

Received v

Similar algorithm can deal with Byzantine failures (σ = 4).

40/52

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = n2 = 4, f1 = f2 = 1, σ = 3

R1,4

R1,3

R1,2

R1,1

R2,4

R2,3

R2,2

R2,1

Decide on

sending v
C1

C2

Received v

Similar algorithm can deal with Byzantine failures (σ = 4).

40/52

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = n2 = 4, f1 = f2 = 1, σ = 3

R1,4

R1,3

R1,2

R1,1

R2,4

R2,3

R2,2

R2,1

Decide on

sending v
C1

C2

Received v

Similar algorithm can deal with Byzantine failures (σ = 4).

40/52

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = n2 = 4, f1 = f2 = 1, σ = 3

R1,4

R1,3

R1,2

R1,1

R2,4

R2,3

R2,2

R2,1

Decide on

sending v
C1

C2 Received v

Similar algorithm can deal with Byzantine failures (σ = 4).

40/52

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = n2 = 4, f1 = f2 = 1, σ = 3

R1,4

R1,3

R1,2

R1,1

R2,4

R2,3

R2,2

R2,1

Decide on

sending v
C1

C2 Received v

Similar algorithm can deal with Byzantine failures (σ = 4).

41/52

Conclusion

E�icient cluster-sending is possible.

Ongoing work: Initial results

I Paper: DISC 2019 (doi:10.4230/LIPIcs.DISC.2019.45).

I Technical Report: https://arxiv.org/abs/1908.01455.

https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://arxiv.org/abs/1908.01455

42/52

The Byzantine learner problem

43/52

Vision: Specializing for read-only workloads

Read-only workloads

Updates

(e.g., write transactions)

ë

Malicious

2Analytics

2Data Provenance

2Machine Learning

2Visualization

Requirement for data-hungry read-only workloads

Stream all data updates with low cost for all replicas involved.

Cluster-sending? Optimal for single messages, not for streams!

43/52

Vision: Specializing for read-only workloads

Read-only workloads

Updates

(e.g., write transactions)

ë

Malicious

2Analytics

2Data Provenance

2Machine Learning

2Visualization

Requirement for data-hungry read-only workloads

Stream all data updates with low cost for all replicas involved.

Cluster-sending? Optimal for single messages, not for streams!

44/52

The need for Byzantine learning

Definition

Let C be a cluster deciding on a sequence of transactions.

The Byzantine learning problem is the problem of sending the decided

transactions from C to a learner L such that:

I the L will eventually receive all decided transactions;

I the L will only receive decided transactions.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in C.

44/52

The need for Byzantine learning

Definition

Let C be a cluster deciding on a sequence of transactions.

The Byzantine learning problem is the problem of sending the decided

transactions from C to a learner L such that:

I the L will eventually receive all decided transactions;

I the L will only receive decided transactions.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in C.

45/52

Background: Information dispersal algorithms

Definition

Let v be a value with storage size ‖v ‖.
An information dispersal algorithm can encode v in n pieces v ′

such that v can be decoded from every set of n − f such pieces.

The algorithm is optimal if each piece v ′ has size d‖v ‖/(n − f)e.
In this case, the n − f pieces necessary for decoding have total size:

(n − f)
⌈
‖v ‖
(n − f)

⌉
≈ ‖v ‖.

Theorem (Rabin)

The IDA information dispersal algorithm is optimal.

46/52

The delayed-replication algorithm

Idea: C sends a Blockchain to learner L

1. Partition the Blockchain in sequences S of n transactions.

2. Replica Ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica Ri ∈ C sends Si with a checksum Ci(S) of S to L.

4. L receives at least n − f distinct pieces and decodes S.

Observations (n > 2f)

I Each sequence S has size ‖S‖ = Ω (n).
I Each piece Si has size ‖Si ‖ = d‖S‖/(n − f)e.
I Learner L receives at most B = n(d‖S‖/(n − f)e + c) bytes:

B ≤ n
(
‖S‖
n − f

+ 1 + c
)
< 2‖S‖ + n + nc = O (‖S‖ + cn) .

46/52

The delayed-replication algorithm

Idea: C sends a Blockchain to learner L

1. Partition the Blockchain in sequences S of n transactions.

2. Replica Ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica Ri ∈ C sends Si with a checksum Ci(S) of S to L.

4. L receives at least n − f distinct pieces and decodes S.

Observations (n > 2f)

I Each sequence S has size ‖S‖ = Ω (n).
I Each piece Si has size ‖Si ‖ = d‖S‖/(n − f)e.
I Learner L receives at most B = n(d‖S‖/(n − f)e + c) bytes:

B ≤ n
(
‖S‖
n − f

+ 1 + c
)
< 2‖S‖ + n + nc = O (‖S‖ + cn) .

46/52

The delayed-replication algorithm

Idea: C sends a Blockchain to learner L

1. Partition the Blockchain in sequences S of n transactions.

2. Replica Ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica Ri ∈ C sends Si with a checksum Ci(S) of S to L.

4. L receives at least n − f distinct pieces and decodes S.

Observations (n > 2f)

I Each sequence S has size ‖S‖ = Ω (n).
I Each piece Si has size ‖Si ‖ = d‖S‖/(n − f)e.
I Learner L receives at most B = n(d‖S‖/(n − f)e + c) bytes:

B ≤ n
(
‖S‖
n − f

+ 1 + c
)
< 2‖S‖ + n + nc = O (‖S‖ + cn) .

46/52

The delayed-replication algorithm

Idea: C sends a Blockchain to learner L

1. Partition the Blockchain in sequences S of n transactions.

2. Replica Ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica Ri ∈ C sends Si with a checksum Ci(S) of S to L.

4. L receives at least n − f distinct pieces and decodes S.

Observations (n > 2f)

I Each sequence S has size ‖S‖ = Ω (n).
I Each piece Si has size ‖Si ‖ = d‖S‖/(n − f)e.
I Learner L receives at most B = n(d‖S‖/(n − f)e + c) bytes:

B ≤ n
(
‖S‖
n − f

+ 1 + c
)
< 2‖S‖ + n + nc = O (‖S‖ + cn) .

46/52

The delayed-replication algorithm

Idea: C sends a Blockchain to learner L

1. Partition the Blockchain in sequences S of n transactions.

2. Replica Ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica Ri ∈ C sends Si with a checksum Ci(S) of S to L.

4. L receives at least n − f distinct pieces and decodes S.

Observations (n > 2f)

I Each sequence S has size ‖S‖ = Ω (n).
I Each piece Si has size ‖Si ‖ = d‖S‖/(n − f)e.
I Learner L receives at most B = n(d‖S‖/(n − f)e + c) bytes:

B ≤ n
(
‖S‖
n − f

+ 1 + c
)
< 2‖S‖ + n + nc = O (‖S‖ + cn) .

46/52

The delayed-replication algorithm

Idea: C sends a Blockchain to learner L

1. Partition the Blockchain in sequences S of n transactions.

2. Replica Ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica Ri ∈ C sends Si with a checksum Ci(S) of S to L.

4. L receives at least n − f distinct pieces and decodes S.

Observations (n > 2f)

I Each sequence S has size ‖S‖ = Ω (n).
I Each piece Si has size ‖Si ‖ = d‖S‖/(n − f)e.
I Learner L receives at most B = n(d‖S‖/(n − f)e + c) bytes:

B ≤ n
(
‖S‖
n − f

+ 1 + c
)
< 2‖S‖ + n + nc = O (‖S‖ + cn) .

47/52

Communication by the delayed-replication algorithm

B

R3

R2

R1

L

1 2 3 4 5 6 7 8 9 10 11 12

Consensus decisions (transactions) −→

No dispersal First 4 transactions Second 4 transactions

48/52

Decoding S using simple checksums (n > 2f)

I Use checksums hash(S).
I The n − f non-faulty replicas will provide correct pieces.

I At least n − f > f messages with correct checksums.

I Received some forged pieces?

I Decoding yields S ′.
I hash(S ′) , hash(S).
I Use other pieces.

I Compute intensive for learner.

49/52

Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by R5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Construct a Merkle tree for pieces S0, . . . , S7.

49/52

Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by R5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Determine the path from root to S5.

49/52

Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by R5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].

49/52

Decoding S using tree checksums

Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by R5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Enables recognizing forged pieces before decoding.

50/52

Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner L, replica R, and decided transactions T . The
delayed-replication algorithm with tree checksums guarantees

1. L will learn T ;

2. L will receive at most |T | messages with a total size of

O

(
‖T ‖

(n
n − f

)
+ |T | log n

)
= O (‖T ‖ + |T | log n) ;

3. L will only need at most |T |/n decode steps;

4. R will sent at most |T |/n messages to L of size

O

(
‖T ‖

n − f
+
|T | log n

n

)
= O

(
‖T ‖ + |T | log n

n

)
.

51/52

Conclusion

E�icient Byzantine learning is possible.

Blockchain applications

I Low-cost checkpoint protocols.

I Scalable storage for resilient systems.

Ongoing work: Initial results

I Paper: ICDT 2020.

52/52

About us

I Jelle Hellings https://jhellings.nl/.

I
Creativity Unfolded

ExpoLab https://expolab.org/.

I ResilientDB
Security, Privacy Reloaded

https://resilientdb.com/.

https://jhellings.nl/
https://expolab.org/
https://resilientdb.com/

53/52

References I

I�ai Abraham et al. “Synchronous Byzantine Agreement with Expected O (1)

Rounds, Expected O
(
n2
)

Communication, and Optimal Resilience”. In:

Financial Cryptography and Data Security . Springer International Publishing,

2019, pp. 320–334. doi: 10.1007/978-3-030-32101-7_20.

Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien �éma. “RBFT:

Redundant Byzantine Fault Tolerance”. In: 2013 IEEE 33rd International
Conference on Distributed Computing Systems. IEEE, 2013, pp. 297–306. doi:

10.1109/ICDCS.2013.53.

Pierre-Louis Aublin et al. “The Next 700 BFT Protocols”. In: ACM
Transactions on Computer Systems 32.4 (2015), 12:1–12:45. doi:

10.1145/2658994.

Eric Brewer. “CAP twelve years later: How the “rules” have changed”. In:

Computer 45.2 (2012), pp. 23–29. doi: 10.1109/MC.2012.37.

Eric A. Brewer. “Towards Robust Distributed Systems (Abstract)”. In:

Proceedings of the Nineteenth Annual ACM Symposium on Principles of
Distributed Computing. ACM, 2000, pp. 7–7. doi: 10.1145/343477.343502.

https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1109/ICDCS.2013.53
https://doi.org/10.1145/2658994
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/343477.343502

54/52

References II

Christian Cachin and Marko Vukolic. “Blockchain Consensus Protocols in

the Wild (Keynote Talk)”. In: 31st International Symposium on Distributed
Computing. Vol. 91. Leibniz International Proceedings in Informatics (LIPIcs).

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 1:1–1:16. doi:

10.4230/LIPIcs.DISC.2017.1.

Miguel Castro. “Practical Byzantine Fault Tolerance”. PhD thesis.

Massachuse�s Institute of Technology, 2001. url:

http://hdl.handle.net/1721.1/86581.

Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance”. In:

Proceedings of the Third Symposium on Operating Systems Design and
Implementation. USENIX Association, 1999, pp. 173–186.

Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance and

Proactive Recovery”. In: ACM Transactions on Computer Systems 20.4 (2002),

pp. 398–461. doi: 10.1145/571637.571640.

Richard A. DeMillo, Nancy A. Lynch, and Michael J. Merri�. “Cryptographic

Protocols”. In: Proceedings of the Fourteenth Annual ACM Symposium on
Theory of Computing. ACM, 1982, pp. 383–400. doi:

10.1145/800070.802214.

https://doi.org/10.4230/LIPIcs.DISC.2017.1
http://hdl.handle.net/1721.1/86581
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/800070.802214

55/52

References III

Tien Tuan Anh Dinh et al. “Untangling Blockchain: A Data Processing View

of Blockchain Systems”. In: IEEE Transactions on Knowledge and Data
Engineering 30.7 (2018), pp. 1366–1385. doi: 10.1109/TKDE.2017.2781227.

D. Dolev. “Unanimity in an unknown and unreliable environment”. In: 22nd
Annual Symposium on Foundations of Computer Science. IEEE, 1981,

pp. 159–168. doi: 10.1109/SFCS.1981.53.

D. Dolev and H. Strong. “Authenticated Algorithms for Byzantine

Agreement”. In: SIAM Journal on Computing 12.4 (1983), pp. 656–666. doi:

10.1137/0212045.

Danny Dolev. “The Byzantine generals strike again”. In: Journal of
Algorithms 3.1 (1982), pp. 14–30. doi: 10.1016/0196-6774(82)90004-9.

Danny Dolev and Rüdiger Reischuk. “Bounds on Information Exchange for

Byzantine Agreement”. In: Journal of the ACM 32.1 (1985), pp. 191–204. doi:

10.1145/2455.214112.

Michael J. Fischer and Nancy A. Lynch. “A lower bound for the time to

assure interactive consistency”. In: Information Processing Le�ers 14.4 (1982),

pp. 183–186. doi: 10.1016/0020-0190(82)90033-3.

https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1137/0212045
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1145/2455.214112
https://doi.org/10.1016/0020-0190(82)90033-3

56/52

References IV

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility

of Distributed Consensus with One Faulty Process”. In: Journal of the ACM
32.2 (1985), pp. 374–382. doi: 10.1145/3149.214121.

Yossi Gilad et al. “Algorand: Scaling Byzantine Agreements for

Cryptocurrencies”. In: Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 2017, pp. 51–68. doi: 10.1145/3132747.3132757.

Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-tolerant Web Services”. In: SIGACT News
33.2 (2002), pp. 51–59. doi: 10.1145/564585.564601.

Jim Gray. “Notes on Data Base Operating Systems”. In: Operating Systems,
An Advanced Course. Springer-Verlag, 1978, pp. 393–481. doi:

10.1007/3-540-08755-9_9.

Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. “Brief

Announcement: Revisiting Consensus Protocols through Wait-Free

Parallelization”. In: 33rd International Symposium on Distributed Computing
(DISC 2019). Vol. 146. Leibniz International Proceedings in Informatics

(LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 44:1–44:3.

doi: 10.4230/LIPIcs.DISC.2019.44.

https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/564585.564601
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.4230/LIPIcs.DISC.2019.44

57/52

References V

Suyash Gupta et al. “An In-Depth Look of BFT Consensus in Blockchain:

Challenges and Opportunities”. In: Proceedings of the 20th International
Middleware Conference Tutorials. ACM, 2019, pp. 6–10. doi:

10.1145/3366625.3369437.

Jelle Hellings and Mohammad Sadoghi. “Brief Announcement: The

Fault-Tolerant Cluster-Sending Problem”. In: 33rd International Symposium
on Distributed Computing (DISC 2019). Vol. 146. Leibniz International

Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2019, 45:1–45:3. doi: 10.4230/LIPIcs.DISC.2019.45.

Jelle Hellings and Mohammad Sadoghi. “Coordination-free Byzantine

Replication with Minimal Communication Costs”. In: Proceedings of the 23th
International Conference on Database Theory . (to appear). 2020.

Maurice Herlihy. “Blockchains from a Distributed Computing Perspective”.

In: Communications of the ACM 62.2 (2019), pp. 78–85. doi:

10.1145/3209623.

Rüdiger Kapitza et al. “CheapBFT: Resource-e�icient Byzantine Fault

Tolerance”. In: Proceedings of the 7th ACM European Conference on Computer
Systems. ACM, 2012, pp. 295–308. doi: 10.1145/2168836.2168866.

https://doi.org/10.1145/3366625.3369437
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.1145/3209623
https://doi.org/10.1145/2168836.2168866

58/52

References VI

Ramakrishna Kotla et al. “Zyzzyva: Speculative Byzantine Fault Tolerance”.

In: Proceedings of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles. ACM, 2007, pp. 45–58. doi: 10.1145/1294261.1294267.

Ramakrishna Kotla et al. “Zyzzyva: Speculative Byzantine Fault Tolerance”.

In: ACM Transactions on Computer Systems 27.4 (2009), 7:1–7:39. doi:

10.1145/1658357.1658358.

Leslie Lamport. “Paxos Made Simple”. In: ACM SIGACT News, Distributed
Computing Column 5 32.4 (2001), pp. 51–58. doi: 10.1145/568425.568433.

Leslie Lamport. “The Part-time Parliament”. In: ACM Transactions on
Computer Systems 16.2 (1998), pp. 133–169. doi: 10.1145/279227.279229.

Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine

Generals Problem”. In: ACM Transactions on Programming Languages and
Systems 4.3 (1982), pp. 382–401. doi: 10.1145/357172.357176.

Jean-Philippe Martin and Lorenzo Alvisi. “Fast Byzantine Consensus”. In:

IEEE Transactions on Dependable and Secure Computing 3.3 (2006),

pp. 202–215. doi: 10.1109/TDSC.2006.35.

https://doi.org/10.1145/1294261.1294267
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/568425.568433
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/TDSC.2006.35

59/52

References VII

Shlomo Moran and Yaron Wolfstahl. “Extended impossibility results for

asynchronous complete networks”. In: Information Processing Le�ers 26.3

(1987), pp. 145–151. doi: 10.1016/0020-0190(87)90052-4.

Arvind Narayanan and Jeremy Clark. “Bitcoin’s Academic Pedigree”. In:

Communications of the ACM 60.12 (2017), pp. 36–45. doi: 10.1145/3132259.

M. Pease, R. Shostak, and L. Lamport. “Reaching Agreement in the Presence

of Faults”. In: Journal of the ACM 27.2 (1980), pp. 228–234. doi:

10.1145/322186.322188.

Dale Skeen. A �orum-Based Commit Protocol. Tech. rep. Cornell University,

1982.

Gadi Taubenfeld and Shlomo Moran. “Possibility and impossibility results in

a shared memory environment”. In: Acta Informatica 33.1 (1996), pp. 1–20.

doi: 10.1007/s002360050034.

Maofan Yin et al. “HotStu�: BFT Consensus with Linearity and

Responsiveness”. In: Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing. ACM, 2019, pp. 347–356. doi:

10.1145/3293611.3331591.

https://doi.org/10.1016/0020-0190(87)90052-4
https://doi.org/10.1145/3132259
https://doi.org/10.1145/322186.322188
https://doi.org/10.1007/s002360050034
https://doi.org/10.1145/3293611.3331591

	Introduction to Blockchains: Theory on resilient fully-replicated systems
	A practical consensus protocol: Pbft
	The cluster-sending problem
	The Byzantine learner problem

