ACM/IFIP 9 o

International

Middleware

Conference December 10-14 2018 Rennes, Brittany, France

QueCC: Queue-Oriented, Control-Free,
Concurrency Architecture

Thamir Qadah
School of Electrical and
Computer Engineering

RU&IE{RUTE& ;;E?Egi"“ / - \\ /@\\
|\ ’A\ ,l

gl el

Computer Science

UCDAVIS Exploratory Systems Lab

UNIVERSITY OF CALIFORNIA

UCDAVIS

Hardware Trends

| |

a Large core counts u Large main-memory

HPE Superdome Server
144 physical cores
o1B of RAM

*Image source: https://www.hpe.com/us/en/servers/superdome.html

High-Contention Workloads

High number of
contented operations

AN

Challenge ?77?

R

State-of-the-Art Concurrency
Control Protocols

Class

Optimistic

SILO CC

SOSP ‘13
® Optimized for multi-core

hardware and main- TIcToc |mestamp o~ 5 g

Orderin
memory datalbases °
FOEDUS- Optimistic VLDB “16
L MOCC CC
® Non-deterministic
ERMIA MVCC SIGMOD ‘16

Cicada MVCC SIGMOD ‘17

Performance Under High-Contention

O
80 OO ERMIA-SI SSN = NO_WAIT |-
% % FOEDUS-MOCC A A SILO R
o o CICADA & 1croc |’
o 60 | 4
2 S
~
o o 1=
= é 40
=
=)
20}
6 L /o -
0.0} 1 | | B O 1 | u
0.0 0.4 0.8 0.9 0.99 0.0 0.4 0.8 0.9 0.99

Zipfian Theta (0) Zipfian Theta (0)

Optimize-for-multi-core concurrency control techniques suffer
| under high-contention due to increasing abort rate

Performance Under High-Contention

®
80 (OO ERMIA-SI SSN > NO_WAIT |-
% % FOEDUS-MOCC A A SILO R
e o CICADA &¢ 1croc |,
o 60| i
2 S
<
o o =
2.9 é 40
==
=5
20}
,-‘ o ‘*
O.(:)_l 1 1 1 e 0_1 g - ; : 1-
0.0 0.4 0.8 0.9 0.99 0.0 0.4 0.8 0.9 0.99
Zipfian Theta (0) Zipfian Theta (0)

| Under high-contention: Non-deterministic alborts
| dominates

2PL - NoWait

Abort Count: O

Worker 6

- Thread #1

Client Transactions

O || D

@

‘L

transaction

— | 7 Worker | - d
| each color presents a Thread #2 6 \ | /

2PL - NoWait

Abort Count: O

r1(a)

w1(b)

Worker 6

- Thread #1

Client Transactions

O || D

wa(o)

@

wa(b) i | d
ro(a) \ | /

Worker
Thread #2

2PL - NoWait

Abort Count: O

r1(a)

w1(b)

Worker 6

- Thread #1

Client Transactions

wa(o)

wa(b) i

Worker
Thread #2

ro(a)

2PL - NoWait

Abort Count: O

Worker (@)
- Thread #1 wi1(D)
Client Transactions *
wa(o)
Worker w2(0) |
ro(a)

Thread #2

10

2PL - NoWait

Abort Count: O

r1(a)

w1(b)

Worker 6

- Thread #1

Client Transactions

wa(o)

conflictl

wa(b) i

Worker
Thread #2

ro(a)

11

2PL - NoWait

Abort Count: O

Abort transaction (to avoid potential deadlocks) |

Worker

48

- Thread #1

Client Transactions

wa(o)

)

Worker
Thread #2 ro(a

12

2PL - NoWait

Abort Count; 1

Worker

- Thread #1

L

Client Transactions

Worker

Thread #2

wa(b) i

,1

ro(a)

13

2PL - NoWait

Abort Count; 1

Worker

- Thread #1

L

Client Transactions

Worker

Thread #2

wa(b) i

,1

ro(a)

14

2PL - NoWait

Abort Count; 1

Worker

- Thread #1

L

Client Transactions

Worker

Thread #2

wa(b) i

,1

ro(a)

15

2PL - NoWait

Abort Count; 1

Worker

L

- Thread #1

O || D

conflictl =1

\\\ \\
Client Transactions ‘ 8

@

wa(b) i | d
ro(a) \ | /

Worker
Thread #2

16

2PL - NoWait

Abort Count; 1

Abort transaction (to avoid potential deadlocks) |

v

Worker 6

- Thread #1

Client Transactions

wa(b) i

Worker
Thread #2

ro(a)

17

2PL - NoWait

Abort Count; 2

Worker

- Thread #1

L

Client Transactions

Worker

Thread #2

wa(b) i

,1

ro(a)

18

2PL - NoWait

Abort Count; 2

Worker e |
- Thread #1 glie)
Client Transactions *
ri(a)
w1()
Worker wa(o)
ro(a)

Thread #2

19

2PL - NoWait

Abort Count; 2

Worker e |
- Thread #1 glie)
Client Transactions *
ri(a)
w1()
Worker wa(o)
ro(a)

Thread #2

20

2PL - NoWait

Abort Count; 2

Worker e |
- Thread #1 glie)
Client Transactions *
ri(a)
w1()
Worker wa(o)
ro(a)

O || D

Thread #2

@

21

2PL - NoWait

Abort Count; 2

wa4(0) B

Worker 6

- Thread #1

r4(d)

Client Transactions

(@) conflict! =

w1(b)

wa(b) i

Worker
Thread #2

ro(a)

22

2PL - NoWait

Abort Count; 2

Abort transaction (to avoid potential deadlocks) |

Worker

- Thread #1

48

Client Transactions

ri(a)

w1(b)

Worker
Thread #2 ra(a

@

23

2PL - NoWait

Abort Count; 3

Worker

- Thread #1

L

Client Transactions

Worker

Thread #2

,1

. Committed Transactions ‘

wa(b)

ro(a)

24

2PL - NoWait

|
ﬂ

Worker
- Thread #1

Client Transactions

Worker
Thread #2

—

@ Eventually transactions commit in some serial order!
@ Many aborts due to high contention on record b

- @ Non-determinism in CC cause these aborts
- @ Wasted work

N

- Committed Transactions ‘

wa(b) ri(a) |
ra(d) wi(b)

25

Key Insights

Many aborts due to high contention

Non-determinism in CC cause these aborts

Can we do better?

s it possible to eliminate non-deterministic
concurrency control from transaction
execution”?

26

Deterministic Transaction
Execution

H-Store [Kallman et al. '08]

Designed and optimized for horizontal scalability, multi-core
hardware and in-memory databases

Stored procedure transaction model
Static partitioning of database
Assigns a single core to each partition

Execute transaction serially without concurrency control within
each partition

27

H-Store

Abort Count: O

P1 is assigned to
Worker Thread #1

Worker
- Thread #1

Client Transactions

|
{
|

|

Single-partition
transactions

Worker
Thread #2

-

e

|

, P1:

| b |

e |

" p2!
Ny

P2 is assigned to
Worker Thread #2

28

H-Store

Abort Count: O

ri(a)

Worker
‘Thread #1
Client Transactions *
wa(d)
Worker w2(C)
ro(d)

Thread #2

. Committed Transactions ‘

29

H-Store

Abort Count: O

Worker
- Thread #1
Client Transactions *
wa(d)
r4(C)
Worker 6

' Thread #2

30

H-Store

Abort Count: O

Worker

- Thread #1

L

Client Transactions

Worker

Thread #2

,1

wa(d)

r4(C)

31

H-Store

Abort Count: O

Worker 6

- Thread #1

Client Transactions

Worker
Thread #2

. Committed Transactions ‘

wa(d) w2(C) | r1(a)

r4(C) ro(d) | wi1(b)

H-Store

Abort Count: O

Worker
- Thread #1

7

Client Transactions

Worker
' Thread #2

- Committed Transactions

wa(dl) o) wo(c) | ri(a)

ra(c) PEs@M ro(d) |wi(b)

(@ Performs well only when transactions are single—partitioned]

33

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

41 @

® ® H-Store

oy

p—

Ihroughput
(Million TPS)
DD

\
\
|
\
\

—o o
N B e
0 1 5 10 20 50 80 100
% of Multi- partltlon transactlons

-

H Store IS sensitive to the percentage of multl partltlon transactions
in the workload

Can We Do Better?

Our motivations are
e [fficiently exploits multi-core and large main-memory systems
e Provide serializable multi-statement transactions for key-value stores
e Scales well under high-contention workloads
Desired Properties
e (Concurrent execution over shared data
e Not limited to partitionable workloads

e \Without any concurrency controls

35

IS it possible to have concurrent execution over shared
data without having any concurrency controls?

36

Introducing: QueCC

Queue-Oriented, Control-Free, Concurrency Architecture

A two parallel & independent phases of priority-driven planning & execution

Phase 1: Deterministic priority-based planning of transaction operations in parallel
= Plans take the form of Prioritized Execution Queues
= Execution Queues inherits predetermined priority of its planner

= Results in a deterministic plan of execution

Phase 2: Priority driven execution of plans in parallel
= Satisfies the Execution Priority Invariance

“For each record (or a queue), operations that belong to higher priority queues
(created by a higher priority planner) must always be executed before executing any
lower priority operations.”

37

Batching Client
Transactions

QueCC Architecture

Priority-based Parallel Planning Phase

38

Batching Client
Transactions

QueCC Architecture

| Priority-based Parallel Planning Phase

Planning Threads
(Pre-determined Priority) |

=
il

High Priority Low Priority
Queues Queues

DB Storage

Ind(j/

‘ Main Memory

39

QueCC Architecture

| Priority-based Parallel Planning Phase

Planning Threads
(Pre-determined Priority)

DB Storage

| § § I I I I | Main Memory
Batching Client) | | | | |
Transactions IIII IIII IIII

Index

High Priority Low Priority - Execution |
Queues Queues Queues

Batching Client
Transactions

QueCC Architecture

| Queue-oriented Parallel Execution Phase

Planning Threads

High Priority Low Priority
Queues Queues

(Pre-determined Priority) |

Queues

Execution |

| Execution Threads

=23

i

Main Memory
DB Storage

Index

41

| QueCC Abort Count: O F

Planning
Thread #2

|

*» Priority Groups

Low-priority
Queues

Client Transactions

wa(o)

r4(d) w1(b)

Planning
Thread #1

6

High-priority
Queues

| Committed Transactions |

42

QueCC || Abort Count: 0 | e
| ‘ | Priority Groups
- | - Low-priority
Planning | Queues
Thread #2

Client Transactions

| | -a
, :

wa(o)
r4(d) r>(a)
, | C
| * w ‘ d
Planning (@) | _//
Thread #1 w1 (o)

| Committed Transactions |

High-priority
Queues

43

| QueCC Abort Count: O F

Planning
Thread #2

*» Priority Groups

Low-priority
Queues

Client Transactions

Planning
Thread #1

6

wi(b)

High-priority
Queues

| Committed Transactions |

44

Abort Count: O F

QueCC -
| | Priority Groups

Low-priority

Planning wa(b) Queues
Thread #2 ra(d)

Client Transactions a
b
| C
* + L d
Planning wa(o) | _//
Thread #1 r2(a)
_ , W1(b) — .
- Committed Transactions |

High-priority
Queues

45

- QueGC | Abort Count: 0

| Priority Groups

- - Low-priority
Planning Queues | B
Thread #2 6 ()

- Client Transactions a
b
| C
_ r d
Planning | _/
Thread #1 walb)
w1(b)

'Committed Transactions

| High-priority
Prioritized Execution Queues

Queues

46

l QueCC

Abort Count: O

Execution
Thread #2

L

Client Transactions

Execution
Thread #1

L

|

*» Priority Groups

Low-priority
Queues

wa(b)

wa(b)

wi(b)

High-priority
Queues

| Committed Transactions |

47

- QueCC

| Abort Count: O

},m Priority Groups
Low-priority -
Execution Queues _ -
Thread #2 A
Client Transactions a
o
-~ C
| \(_j/

Execuhon
"I Thread #1

I’2 |
ri(@

- Committed Transactions

High-priority
Queues

Execution Priority

Invariance

48

- QueCC

| Abort Count: O

Execution e

Thread #2

Priority Groups

Low-priority
Queues

| Client Transactions

Execution e

N Thread #1

Execution Priority

Invariance

High-priority
Queues

wa(b)| ri(a)

ro(a) |wi(b)

1Committed Transactions

49

- QueCC

| Abort Count: O

Execution wa(D)

v

Thread #2

Priority Groups

Low-priority
Queues

| Client Transactions

Execuhon
"I Thread #1

E

Execution Priority

Invariance

High-priority
Queues

wa(b)| ri(a)

ro(a) |wi(b)

- Committed Transactions

50

Abort Count: O

l QueCC

| *» Priority Groups
| N Low-priority
Execution wa(b) @ Queues
Thread #2
Client Transactions | | i a

Execution 6

Thread #1

| Committed Transactions |

High-priority
Queues

wa(b)| ri(a)
ro(a) |wi(b)

51

Abort Count: O

l QueCC

Execution

Thread #2

6 w4 (o) ||

Client Transactions

Execution
Thread #1

1m

|

*» Priority Groups

Low-priority
Queues

High-priority
Queues

| Committed Transactions |

wa(b)| ri(a)
ro(a) |wi(b)

52

Abort Count: O

l QueCC

| *» Priority Groups
| Low-priority
Execution Queues
Thread #2
Client Transactions | | i a

Execution 6

Thread #1

| Committed Transactions |

High-priority
Queues

- QueCC

Abort Count: O

Execution
Thread #2

L

Execution
Thread #

Priority Groups

Low-priority
Queues

High-priority
Queues

wa(b) (e w2(b) | ri(a)

r4(d) E8CI] ro(a) [wi(b)

Committed Transactions

54

ExpoDB Fabric

Application Layer / Testbed (YCSB, SYCSB, TPC-C Benchmarks)

Enable/Disable Secure Transactionis

Consensus Protocols

(POE, Zyzzyva, Bitcoin-NG, PoW, PBFT, RBFT, QBFT)

Concurrency Control Protocols
(2PL, QueCC, 2VCC, DORA, MVCC, Timestamp,

H-Store, NoWait, Silo, Foedus, MOCC, TicToc, Cicada)

L

N

Y4

\ 4
<
m

Transaction
Manager

Block Creator
(Distributed Ledger)

y

Crypto Toolkit

Logging

—>

I v
Execution Threads \i i

N

[

A \I\\ =

Commit Protocols:
(Q-Store, 2PC, 3PC, Calvin, EasyCommit)

Message/IO Queues

)

)

Qage Layer: Lineage-based Storage ArchltectuE//

- <?s
4 \\/ \
\)

\ \"l \\’6

Expolfi

55

Evaluation Environment

Microsoft Azure instance with 32 core
CPU: Intel Xeon E5-2698B v3

32KB L1 data an instruction caches

Hardware 256KB L2 cache
40MB L3 cache

RAM: 448GB

YCSB: 1 table,10 operations, 50% RMW, Zipfian distribution
Workload

TPCC: 9 tables, Payment and NewOrder, 1 Warehouse

Operating System: Ubuntu LTS 16.04.3
Software

Compiler: GCC with -O3 compiler optimizations

56

Effect of Varying Contention

5 write and 5 read operation per transaction
o 32 worker threads

3.3x
| Joo erMasISsN mHmQuEcC| @
80 [[# % FOEDUS-MOCC A A SILO ,
V e o CICADA &9 Tcroc |/,
> NO_WAIT A

Throughput
(Million TPS)

0.0 04 08 09 0099 0.0 04 0.8 09 099
Zipfian Theta (0) Zipfian Theta (0)

Workload contention resiliency
Cache locality under high-contention

57

Effect of Varying Worker Threads

e S5 write and 5 read operation per transaction

e Zipfian theta = 0.99 [

3X
2.5F
80}
2.0}
~ 60 |
=17
Q..& 1.5} S
=
o I ;
= o 40+
2= 1.0l =
=P
20}
0.5
0.0l 1 1 , 5. 0
4 8 16 24 32
Worker Threads

OO ERMIA-SI_SSN BHE QUECC
% % FOEDUS-MOCC A A SILO
e o CICADA €@ TICTOC

e NO WAIT

e e e

4 8 16 24 32
Worker Threads

aborts

Avoiding thread coordination & eliminating all execution-induced

58

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

41 ®

® ® H-Store

oy

[

I'hroughput
(Million TPS)
N

@
. ¥ e 9 o
0 1 5 10 20 50 80 100
% of Multi-partition transactions

-

Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload

41 @

W

\
\
\
= .]
' —-— T
.—¢ T
\
\ \
\ \
\ \
\ A
\ \

4.3x at 1%

I'hroughput
(Million TPS)
DD

p—

—o o

-

® ® H-Store BHE QueCC/| |
g 2—a—

\
\
_

| Two orders of

Magnitude

s — 3

0 1 5 10 20 50 80 100
% of Multi-partition transactions

QueCC is not sensitive to multi-partitioning

60

TPC-C Results

1 Warehouse (highly contended workload)
50% Payment + 50% NewOrder transaction mix

TICTOCF

SILO} . | , » q

QUECC

NO WAIT[q

CICADA}

FOEDUS-MOCC Bl
ERMIA-SI SSN [, |

0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0 4.5
Throughput (Million TPS)

QueCC can achieve up to 3x better performance é)n high-contention
TPC-C workloads

61

QueCC Conclusions

v Efficient, parallel and deterministic in-memory transaction processing
V' Eliminates almost all aborts by resolving transaction conflicts a priori

v Works extremely well under high-contention workloads

62

What’s Next: Q-Store

QueCC Q-Store
m | | I
il e =
Execution P
Queues
~—— m ||
= e s
Multi-core Partitioned
Single-node on Distributed

Cluster

| Batching Client
Transactions

What’s Next: Q-Store

N —— N ——
S —— ——
) B
— —
S ——— S ——

Plan Local and Remote
Execution Queues

64

Batching Client
Transactions

What’s Next: Q-Store

v V\ -
v V\’
v _/
v v
N— N—

Plan Local and Remote
Execution Queues

EERLN
—N

o=

(1 =

Deliver Remote
Execution Queues

65

Batching Client
Transactions

What’s Next: Q-Store

— ——
S —— S ——
N N
N—— N——

Plan Local and Remote
Execution Queues

BRI
—N

o=

(1 =

Deliver Remote
Execution Queues

%m
=

%IIII
)
=

%IIII
-
=

S ——
)
N——
——

A ——

Execute
Queues

66

What’s Next: Q-Store

QueCC Q-Store
| ' Parallel and distributed
-1 i
> > . .
IIII = = V" Queue-oriented execution
ecion | TP) and communication
Queues J J
= lil il v Minimal coordination among
= ~— ~—— |
= = , nodes and threads
Multi-core Partitioned
Single-node on Distributed

Cluster

What’s Next: QBFT

QueCC Q-Store

-)
IIII

T Il

- = |
I (s D,
= Partitioned & =
i Replicated I
= B —

= =
Execution B ;‘ : | ,
Queues
—
~— ~—
— =—
Multi-core Partitioned
Single-node on Distributed
Cluster

__

(@ == (@

(@ == (@

(@ == (Om=

-

68

What’s Next: QBFT

@ m= (o m=
T Il

Tl
T Il

QBFT

)

Partitioned &

Replicated

(@ == (@
(@ == (@

(== (@m=

(@ == (Om=

J

69

Jelle Hellings, PostDoc Suyash Gupta, PhD Thamir Qadah, PhD

(Blockchain) (Blockchain) (Coordination-free Concurrency)

Mohammad Sadoghi Sajjad Rahnama, PhD Nikhil Wadhwa, PhD Masoud Hemmatpour, PhD

. . Blockchain Blockchain (RDMA KV-Stores)
(Principal Investigator) () ()

THANK
YOU

| — | — —

Domenic Cianfichi, MSc Shreenath lyer, MSc Robert He, MSc Patrick Liao, BSc
(Blockchain) (Blockchain) (Coordination-free Concurrency) (Blockchain)

