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Hardware Trends

| |

a Large core counts u Large main-memory

HPE Superdome Server
144 physical cores
o1B of RAM

*Image source: https://www.hpe.com/us/en/servers/superdome.html



High-Contention Workloads
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State-of-the-Art Concurrency
Control Protocols
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Performance Under High-Contention
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Optimize-for-multi-core concurrency control techniques suffer
| under high-contention due to increasing abort rate




Performance Under High-Contention
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Key Insights

Many aborts due to high contention

Non-determinism in CC cause these aborts

Can we do better?

s it possible to eliminate non-deterministic
concurrency control from transaction
execution”?
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Deterministic Transaction
Execution

H-Store [Kallman et al. '08]

Designed and optimized for horizontal scalability, multi-core
hardware and in-memory databases

Stored procedure transaction model
Static partitioning of database
Assigns a single core to each partition

Execute transaction serially without concurrency control within
each partition
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Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload
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Can We Do Better?

Our motivations are
e [fficiently exploits multi-core and large main-memory systems
e Provide serializable multi-statement transactions for key-value stores
e Scales well under high-contention workloads
Desired Properties
e (Concurrent execution over shared data
e Not limited to partitionable workloads

e \Without any concurrency controls
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IS it possible to have concurrent execution over shared
data without having any concurrency controls?
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Introducing: QueCC

Queue-Oriented, Control-Free, Concurrency Architecture

A two parallel & independent phases of priority-driven planning & execution

Phase 1: Deterministic priority-based planning of transaction operations in parallel
= Plans take the form of Prioritized Execution Queues
= Execution Queues inherits predetermined priority of its planner

= Results in a deterministic plan of execution

Phase 2: Priority driven execution of plans in parallel
= Satisfies the Execution Priority Invariance

“For each record (or a queue), operations that belong to higher priority queues
(created by a higher priority planner) must always be executed before executing any
lower priority operations.”
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Batching Client
Transactions

QueCC Architecture

Priority-based Parallel Planning Phase
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Batching Client
Transactions

QueCC Architecture
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QueCC Architecture
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Batching Client
Transactions

QueCC Architecture

| Queue-oriented Parallel Execution Phase

Planning Threads

High Priority Low Priority
Queues Queues

(Pre-determined Priority) |

Queues

Execution |

| Execution Threads

=23

i

Main Memory
DB Storage

Index

41



| QueCC Abort Count: O F

Planning
Thread #2

|

*» Priority Groups

Low-priority
Queues

Client Transactions

wa(o)

r4(d) w1(b)

Planning
Thread #1

6

High-priority
Queues

| Committed Transactions |

42




QueCC || Abort Count: 0 | e
| ‘ | Priority Groups
- | - Low-priority
Planning | Queues
Thread #2

Client Transactions

| | -a
, :

wa(o)
r4(d) r>(a)
, | C
| * w ‘ d
Planning (@) | \\_//
Thread #1 w1 (o)

| Committed Transactions |

High-priority
Queues

43



| QueCC Abort Count: O F

Planning
Thread #2

*» Priority Groups

Low-priority
Queues

Client Transactions

Planning
Thread #1

6

wi(b)

High-priority
Queues

| Committed Transactions |

44



Abort Count: O F

QueCC -
| | Priority Groups

Low-priority

Planning wa(b) Queues
Thread #2 ra(d)

Client Transactions a
b
| C
* + L d
Planning wa(o) | \\_//
Thread #1 r2(a)
_ , W1(b) — .
- Committed Transactions |

High-priority
Queues

45



- QueGC | Abort Count: 0

| Priority Groups

- - Low-priority
Planning Queues | B
Thread #2 6 ( )

- Client Transactions a
b
| C
_ r d
Planning | \_/
Thread #1 walb)
w1(b)

'Committed Transactions

| High-priority
Prioritized Execution Queues

Queues

46



l QueCC
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ExpoDB Fabric
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Evaluation Environment

Microsoft Azure instance with 32 core
CPU: Intel Xeon E5-2698B v3

32KB L1 data an instruction caches

Hardware 256KB L2 cache
40MB L3 cache

RAM: 448GB

YCSB: 1 table,10 operations, 50% RMW, Zipfian distribution
Workload

TPCC: 9 tables, Payment and NewOrder, 1 Warehouse

Operating System: Ubuntu LTS 16.04.3
Software

Compiler: GCC with -O3 compiler optimizations
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Effect of Varying Contention
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Effect of Varying Worker Threads
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Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload
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Effect of Increasing Percentage of Multi-
Partition Transactions in the Workload
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TPC-C Results

1 Warehouse (highly contended workload)
50% Payment + 50% NewOrder transaction mix
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QueCC can achieve up to 3x better performance é)n high-contention
TPC-C workloads
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QueCC Conclusions

v Efficient, parallel and deterministic in-memory transaction processing
V' Eliminates almost all aborts by resolving transaction conflicts a priori

v Works extremely well under high-contention workloads
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What’s Next: Q-Store

QueCC Q-Store
m | | I
il e =
Execution P
Queues
~—— m ||
= e s
Multi-core Partitioned
Single-node on Distributed

Cluster



| Batching Client
Transactions
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Batching Client
Transactions
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Batching Client
Transactions

What’s Next: Q-Store
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What’s Next: Q-Store

QueCC Q-Store
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What’s Next: QBFT

QueCC Q-Store
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What’s Next: QBFT
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