
Project presentation

Python SDK for
NexRes

By: Arindaam Roy, UC Davis
Guided By: Prof. Mohammad Sadoghi, UC Davis

Table of contents

Creation and Transfer of
Assets

SDK for NFT marketplace Transaction structure

01

04

02

05

03

06

Motivation and
Objectives

Project
Contributions

Core Concepts

Demo Architecture &
Transaction flow

Challenges and
Future Work

Motivation and
Objectives

01

● What is NexRes?
○ Next generation of ResilientDB (ResDB)

■ High Throughput Yielding Permissioned
Blockchain Fabric

○ A consensus engine
■ core consensus protocol is based on a highly

optimized PBFT
○ A key-value store with durable storage
○ Written in C++

SDK: a precursor to NFT Marketplace

● What is needed for NFT Marketplace?
○ Easy way to create and transfer asset
○ Validation of transactions
○ Support for modern backend languages like python

SDK: a precursor to NFT Marketplace

Project
Contributions

02

UTXO model on NexRes

- Prepares the Tx
- Signs/fulfills the Tx
- Sends the Tx over

REST endpoints

- REST endpoints in
C++

- To post a Tx
- To get a Tx

- Signature
- Double spend
- Duplicate Tx
- etc

1. Python SDK 2. KV interface 3. Tx validation

Client Server

Core concepts

03

Transactions (Tx)

● Enforces a UTXO model
● Encodes information such as:

○ Public keys (Owners)
○ Fulfillment of previous Tx
○ Asset info

● Inspired from BigChainDB transaction spec (BEP-13)

Tx Structure

Tx Validation
● NexRes validates the inputs of a Tx
● Ed25519 public-key signature to validate if the output of a

tx is fulfilled by the correct owner
● Prevent double spend by checking if (id(Txi), index) is part

of the input of any committed or enqueued Tx

Demo

04

Architecture & Tx
Flow

05

NexRes
Architecture TCP socket

REST APIs

Tx Flow

Tx Preparation Tx Fulfillment Tx Verification Tx Commitment

Challenges and
Future work

06

Challenges

● Securely storing private keys
○ The SDK can generate private and public

keys but they need to be secure stored
● Validation is a python binding (makes it slow)

○ C++ does not have well maintained
cryptoconditions libs

Future work

● Validation in C++ (ongoing work)
● Using a persistence storage which allows for

complex queries
● Requiring the signatures of both current and

future owners for creation and transfer of
assets

● Explore ResDB network with the sdk
● Package the SDK to PyPI

Thank You!

