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● What is NexRes?
○ Next generation of ResilientDB (ResDB)

■  High Throughput Yielding Permissioned 
Blockchain Fabric

○ A  consensus engine
■ core consensus protocol is based on a highly 

optimized PBFT
○ A key-value store with durable storage
○ Written in C++

SDK: a precursor to NFT Marketplace



● What is needed for NFT Marketplace?
○ Easy way to create and transfer asset
○ Validation of transactions
○ Support for modern backend languages like python

SDK: a precursor to NFT Marketplace
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UTXO model on NexRes

- Prepares the Tx
- Signs/fulfills the Tx
- Sends the Tx over 

REST endpoints

- REST endpoints in 
C++

- To post a Tx 
- To get a Tx

- Signature
- Double spend
- Duplicate Tx
- etc

1. Python SDK 2. KV interface 3. Tx validation 

Client Server
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Transactions (Tx)

● Enforces a UTXO model
● Encodes information such as:

○ Public keys (Owners)
○ Fulfillment of previous Tx
○ Asset info

● Inspired from BigChainDB transaction spec (BEP-13)



Tx Structure





Tx Validation
● NexRes validates the inputs of a Tx
● Ed25519 public-key signature to validate if the output of a 

tx is fulfilled by the correct owner
● Prevent double spend by checking if (id(Txi), index) is part 

of the input of any committed or enqueued Tx 



Demo
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Architecture & Tx 
Flow
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NexRes 
Architecture TCP socket

REST APIs



Tx Flow

Tx Preparation Tx Fulfillment Tx Verification Tx Commitment 
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Challenges

● Securely storing private keys
○ The SDK can generate private and public 

keys but they need to be secure stored
● Validation is a python binding (makes it slow)

○ C++ does not have well maintained 
cryptoconditions libs



Future work

● Validation in C++ (ongoing work)
● Using a persistence storage which allows for 

complex queries
● Requiring the signatures of both current and 

future owners for creation and transfer of 
assets

● Explore ResDB network with the sdk
● Package the SDK to PyPI



Thank You!


