
The Bedrock of Byzantine Fault Tolerance

Mohammad Javad Amiri1, Chenyuan Wu2, Divyakant Agrawal3, Amr El Abbadi3,
Boon Thau Loo2, Mohammad Sadoghi4

A Unified Platform for BFT Protocols
Analysis, Implementation, and Experimentation

1Stony Brook University, 2UPenn, 3UC Santa Barbara, 4UC Davis

Distributed transaction processing

2

(Alice,Bob,10)

ID Name BAL
1 Alice 20
2 Bob 10
3 Carol 15

ID Name BAL
1 Alice 20
2 Bob 10
3 Carol 15

ID Name BAL
1 Alice 20
2 Bob 10
3 Carol 15

ID Name BAL
1 Alice2010
2 Bob 1020
3 Carol 15

ID Name BAL
1 Alice2010
2 Bob 1020
3 Carol 15

ID Name BAL
1 Alice2010
2 Bob 1020
3 Carol 15

1:
 (
Al
ic
e,
Bo
b,
10
)

1: (Alice,Bob,10)

Accept?
Commit

Accepted!

Accepted!

Tnx_3

Tnx_2

Tnx_1

Tnx_3

Tnx_2

Tnx_1

Tnx_3

Tnx_2

Tnx_1

State Machine Replication: a replicated service whose state is mirrored across different deterministic replicas
• Assign order to each client request in the global service history and execute it in that order

Byzantine fault-tolerant protocol: PBFT

3

2f+1

2f+1

3f+1

Pre-prepare Prepare Commit
PB

FT

At Most f
Byzantine Failures

Nodes can fail arbitrarily, including deviating from the protocol

BFT protocols landscape

4

Zyzzyva5 Tendermint

HotStuffPBFTQ/U

CheapBFT Prime

PoE SBFT Kauri

ThemisFaBBosco

Linear PBFT

Zyzzyva

Quorum
F3

F13

F14

F10

F6

F10

F7F4F8

F10

F5 F12 F2

F1F9

What protocol best fits our needs?

Analysis Implementation Experimentation

BFT protocols design space and design dimensions

• Design space
• A set of dimensions to analyze BFT protocols

• Design choices
• Trade-offs between dimensions
• A set of one-to-one functions, each maps protocols in its domain to protocols in its range

• Focus on partially synchronous BFT protocols

5

1 2 3
commitment

phases

replicas

3f+1

5f+1

7f+1
domain

range

Different stages of replicas in a BFT protocol

6

Recovery

Recovery

Recovery

Recovery

Ordering Execution View-
Change

Check
pointingclient

Requests r1

r2

r3

rn

...

client

PBFT

7

r1

Request Pre-prepare Prepare Commit Replyc

r2

r3

r4

View-change New view Checkpointing

proactiveO(n) All nodes O(n2) O(n)O(n2) O(n2) O(n2)

Recovery

Contact
Replica

Exe.

Design space of BFT protocols

8

Protocol structure
P1. Commitment strategy
P2. Number of commitment phases
P3. View-change
P4. Checkpointing
P5. Recovery
P6. Types of clients

Environmental Settings
E1. Number of replicas
E2. Communication topology
E3. Authentication
E4. Responsiveness, synchronization, and timers

Quality of Service
Q1. Order-fairness
Q2. Load balancing

Performance Optimization
O1. Out-of-order processing
O2. Request pipelining
O3. Parallel ordering
O4. Parallel execution
O5. Read-only requests processing
O6. Separating ordering and execution
O7. Trusted hardware
O8. Request/reply dissemination

Design choices

1. Linearization
2. Phase reduction through redundancy
3. Leader rotation
4. Non-responsive leader rotation
5. Optimistic replica reduction
6. Optimistic phase reduction
7. Speculative phase reduction

9

8. Speculative execution
9. Optimistic conflict-free
10. Resilience
11. Authentication
12. Robust
13. Fair
14. Tree-based LoadBalancer

Design choice 1: Linearization

• Trade-off between communication topology and communication phases.
• Linear PBFT

• The collector needs to send a certificate of having received the required signatures.

10

Design choice 2: Phase reduction through redundancy

• Trade-off between the number of ordering phases and the number of replicas
• FaB

11

Design choice 3: Leader rotation

• Replace the stable leader with the rotating leader mechanism by adding one phase
• HotStuff

12

Design choice 8: Speculative execution

• Eliminate the prepare and commit phases while optimistically assuming that all
replicas are non-faulty
• Zyzzyva

13

Derivation of protocols from PBFT using design choices

14

1. Linearization
2. Phase reduction through redundancy
3. Leader rotation
4. Non-responsive leader rotation
5. Optimistic replica reduction

Zyzzyva5 Tendermint

HotStuffPBFTQ/U

CheapBFT Prime

PoE SBFT Kauri

ThemisFaBBosco

Linear PBFT

Zyzzyva

Quorum
F3

F13

F14

F10

F6

F10

F7F4F8

F10

F5 F12 F2

F1

6. Optimistic phase reduction
7. Speculative phase reduction
8. Speculative execution
9. Optimistic conflict-free
10. Resilience

11. Authentication
12. Robust
13. Fair
14. Tree-based LoadBalancer

F9

Implementation

15

• The core unit
• Defines entities, e.g., clients and nodes, and maintains the application logic and data
• Defines workloads and benchmarks

The state manager
• Enables the core unit to track the states and transitions of each entity according to the protocol
• Defines a domain-specific language (DSL) to rapidly prototype BFT protocols

The plugin manager
• Implements protocol-specific behaviors that cannot be handled by the protocol config
• Enables users to define their own dimensions/values or to update existing dimensions without requiring

changes to the platform code or rebuilding the platform binaries

The run-time unit
• Manages the run-time execution
• E.g., manages benchmarks, setups all entities, enables plugins to run, reports results

DSL code

• Written in the protocol config
• Defines different dimensions and their chosen

values, the list of roles, phases, states, messages,
quorum conditions, and plugins
• Reduces the effort needed to write a BFT protocol

16

Experimental settings

• Platform: Amazon EC2

• PBFT, Zyzzyva, SBFT, FaB, PoE, (Chained-)HotStuff, Kauri, Themis, FLB and FTB.
• Evaluate the impact of the impact of design choices 1, 2, 3, 6, 7, 8, 10, 11, 13, and 14

• Workload with client request/reply payload sizes of 128/128 byte.
• Measuring performance

• Throughput
• Latency

17

Performance with different number of replicas

18

Future work

19

• Incorporating automatic selection strategies in Bedrock
• Using machine learning to select the appropriate BFT protocol, or switch protocols at runtime

• Extending the supported protocols
• E.g., adding synchronous and fully asynchronous protocols

• Diversifying replica implementation using n-version programming
• To ensure the independent failure of replicas

• Enabling scalable transaction processing
• Running different instances of consensus protocols in parallel

• Enabling users to check the correctness of their written protocols
• Transforming the DSL code written in Bedrock to the language used by verification tools

Questions?

20

