Explaining Results of Path Queries on Graphs: Single-Path Results for Context-Free Path Queries

Jelle Hellings
Department of Computer Science,
University of California, Davis, Davis, CA 95616-8562, USA

Edge-labeled graphs and queries

worksWith

Edge-labeled graphs and queries

worksWith

Edge-labeled graphs and queries

worksWith

Path queries: Expressing queries via formal languages

- Simple queries represent graph navigation via a path.
- Capture this navigation via the path labeling.
- Express the labeling of interest via a formal language E.g., regular languages or context-free languages.

Path queries: Expressing queries via formal languages

- Simple queries represent graph navigation via a path.
- Capture this navigation via the path labeling.
- Express the labeling of interest via a formal language E.g., regular languages or context-free languages.

This work: Context-free path queries
A grammar $\mathscr{C}=(\mathcal{N}, \Sigma, \mathcal{P})$ is

- a set of non-terminals \mathcal{N};
- a set of alphabet symbols Σ; and
- a set of production rules \mathcal{P} of the form $\mathrm{A} \mapsto \sigma$ or $\mathrm{A} \mapsto$ в с.

Example: The context-free grammar for indirectFriendOf := friendOf ${ }^{+}$
$\mathcal{N}=\{\mathrm{A}\}, \Sigma=\{$ friendOf $\}$, and $\mathcal{P}=\{\mathrm{A} \rightarrow$ friendOf, $\mathrm{A} \rightarrow \mathrm{A} A\}$.

Limitations of traditional path query evaluation

Problem: Alice wants to contact Eve via friends
indirectFriendOf

Limitations of traditional path query evaluation

Problem: Alice wants to contact Eve via friends

indirectFriendOf $\xrightarrow{\text { evaluates to }}$| Alice | Alice |
| :---: | :---: |
| Alice | Carol |
| \ldots | \ldots |
| Alice | Eve |
| \ldots | \ldots |

Limitations of traditional path query evaluation

Problem: Alice wants to contact Eve via friends

indirectFriendOf $\xrightarrow{\text { evaluates to }}$| Alice | Alice |
| :---: | :---: |
| Alice | Carol |
| \ldots | \ldots |
| Alice | Eve |
| \ldots | \ldots |

Limitations of traditional path query evaluation

Problem: Alice wants to contact Eve via friends

indirectFriendOf $\xrightarrow{\text { evaluates to }}$| Alice | Alice |
| :---: | :---: |
| Alice | Carol |
| \ldots | \ldots |
| Alice | Eve |
| \ldots | \ldots |

The single-path semantics

The evaluation single $\left(\left.q\right|_{\mathfrak{F})}\right.$) of path query q specified by language \mathcal{L} on graph \mathfrak{G} yields $\operatorname{single}\left(\left.q\right|_{\mathfrak{G}}\right)=\{m \pi n \mid \pi$ is a shortest path in \mathfrak{G} such that $\operatorname{trace}(\pi) \in \mathcal{L}\}$.
indirectFriendOf

The single-path semantics

The evaluation single $\left(\left.q\right|_{\mathfrak{F})}\right.$) of path query q specified by language \mathcal{L} on graph \mathfrak{G} yields $\operatorname{single}\left(\left.q\right|_{\mathfrak{G}}\right)=\{m \pi n \mid \pi$ is a shortest path in $\mathfrak{5}$ such that $\operatorname{trace}(\pi) \in \mathcal{L}\}$.
indirectFriendOf $\xrightarrow[\text { single-path }]{\text { evaluates to }}$

> Alice friendOf Bob friendOf Alice Alice friendOf Carol \ldots Alice friendOf Bob friendOf Eve

Representing the paths of interest

- Edge-labeled graphs are finite automata.
- The traces of paths from one node to another represent a regular language.

Representing the paths of interest

- Edge-labeled graphs are finite automata.
- The traces of paths from one node to another represent a regular language.

Lemma (Bar-Hillel et al.)
Let $\mathscr{C}=(\mathcal{N}, \Sigma, \mathcal{P})$ be a grammar, let $\mathscr{F}=(\mathcal{V}, \Sigma, \delta)$ be a graph, let $A \in \mathcal{N}$, and let $m, n \in \mathcal{V}$. The language $\mathcal{L}(\mathscr{C} ; A) \cap \mathcal{L}(\mathscr{G} ; m, n)$ can be represented by a grammar.

Representing the paths of interest

- Edge-labeled graphs are finite automata.
- The traces of paths from one node to another represent a regular language.

Lemma (Bar-Hillel et al.)
Let $\mathscr{C}=(\mathcal{N}, \Sigma, \mathcal{P})$ be a grammar, let $\mathscr{F}=(\mathcal{V}, \Sigma, \delta)$ be a graph, let $A \in \mathcal{N}$, and let $m, n \in \mathcal{V}$. The language $\mathcal{L}(\mathscr{C} ; A) \cap \mathcal{L}(\mathscr{G} ; m, n)$ can be represented by a grammar.

- Mismatch: many paths have the same trace!
- Solution: combine encoding of grammar and graph via annotated grammar.

Annotated grammar: Example

indirectFriendOf :=
$\{\mathrm{A} \rightarrow$ friendOf, $\mathrm{A} \rightarrow \mathrm{AA}\}$.

Annotated grammar: Example

Annotated grammar $\left.\mathscr{C}\right|_{\mathfrak{G}}=\left(\left.\mathcal{N}\right|_{\mathfrak{F}}, \Sigma,\left.\mathcal{P}\right|_{\mathfrak{F}}\right)$ with

- $\left.\mathcal{N}\right|_{\mathfrak{F}}=\left\{\left.\mathrm{A}\right|_{m n} \mid m, n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} \cup\left\{\left.\mathrm{A}\right|_{\mathrm{F} n} \mid n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} ;$ and
- $\left.\mathcal{P}\right|_{\mathfrak{G}}=P_{\Sigma} \cup P_{\mathcal{N}}$ with
- $P_{\Sigma}=\left\{\left.\mathrm{A}\right|_{m n} \mapsto \sigma \mid(m, \sigma, n) \in \delta \wedge(\mathrm{A} \mapsto \sigma) \in \mathcal{P}\right\}$; and
- $P_{\mathcal{N}}=\left\{\left.\left.\left.\mathrm{A}\right|_{m n} \mapsto \mathrm{~B}\right|_{m o} \mathrm{c}\right|_{o n} \mid(\mathrm{A} \mapsto \mathrm{B} \mathbf{c}) \in \mathcal{P}\right\}$.

Annotated grammar: Example

indirectFriendOf :=
$\{\mathrm{A} \rightarrow$ friendOf, $\mathrm{A} \rightarrow \mathrm{AA}\}$.

Annotated grammar $\left.\mathscr{C}\right|_{\mathfrak{F}}=\left(\left.\mathcal{N}\right|_{\mathfrak{F}}, \Sigma,\left.\mathcal{P}\right|_{\mathfrak{F}}\right)$ with

- $\left.\mathcal{N}\right|_{\mathfrak{F}}=\left\{\left.\mathrm{A}\right|_{m n} \mid m, n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} \cup\left\{\left.\mathrm{A}\right|_{\mathrm{F} n} \mid n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} ;$ and
- $\left.\mathcal{P}\right|_{\mathfrak{G}}=P_{\Sigma} \cup P_{\mathcal{N}}$ with
- $P_{\Sigma}=\left\{\left.\mathrm{A}\right|_{m n} \mapsto \sigma \mid(m, \sigma, n) \in \delta \wedge(\mathrm{A} \mapsto \sigma) \in \mathcal{P}\right\}$; and
- $P_{\mathcal{N}}=\left\{\left.\left.\left.\mathrm{A}\right|_{m n} \mapsto \mathrm{~B}\right|_{m o} \mathrm{c}\right|_{o n} \mid(\mathrm{A} \mapsto \mathrm{B} \mathbf{c}) \in \mathcal{P}\right\}$.

Deriving a path from Alice to Eve

Annotated grammar: Example

indirectFriendOf :=
$\{\mathrm{A} \rightarrow$ friendOf, $\mathrm{A} \rightarrow \mathrm{AA}\}$.

Annotated grammar $\left.\mathscr{C}\right|_{\mathfrak{F}}=\left(\left.\mathcal{N}\right|_{\mathfrak{F}}, \Sigma,\left.\mathcal{P}\right|_{\mathfrak{F}}\right)$ with

- $\left.\mathcal{N}\right|_{\mathfrak{F}}=\left\{\left.\mathrm{A}\right|_{m n} \mid m, n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} \cup\left\{\left.\mathrm{A}\right|_{\mathrm{F} n} \mid n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} ;$ and
- $\left.\mathcal{P}\right|_{\mathfrak{G}}=P_{\Sigma} \cup P_{\mathcal{N}}$ with
- $P_{\Sigma}=\left\{\left.\mathrm{A}\right|_{m n} \mapsto \sigma \mid(m, \sigma, n) \in \delta \wedge(\mathrm{A} \mapsto \sigma) \in \mathcal{P}\right\}$; and
- $P_{\mathcal{N}}=\left\{\left.\left.\left.\mathrm{A}\right|_{m n} \mapsto \mathrm{~B}\right|_{m o} \mathrm{c}\right|_{o n} \mid(\mathrm{A} \mapsto \mathrm{B} \mathbf{c}) \in \mathcal{P}\right\}$.

Deriving a path from Alice to Eve

Annotated grammar: Example

indirectFriendOf :=
$\{\mathrm{A} \rightarrow$ friendOf, $\mathrm{A} \rightarrow \mathrm{AA}\}$.

Annotated grammar $\left.\mathscr{C}\right|_{\mathfrak{F}}=\left(\left.\mathcal{N}\right|_{\mathfrak{F}}, \Sigma,\left.\mathcal{P}\right|_{\mathfrak{F}}\right)$ with

- $\left.\mathcal{N}\right|_{\mathfrak{F}}=\left\{\left.\mathrm{A}\right|_{m n} \mid m, n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} \cup\left\{\left.\mathrm{A}\right|_{\mathrm{F} n} \mid n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} ;$ and
- $\left.\mathcal{P}\right|_{\mathfrak{G}}=P_{\Sigma} \cup P_{\mathcal{N}}$ with
- $P_{\Sigma}=\left\{\left.\mathrm{A}\right|_{m n} \mapsto \sigma \mid(m, \sigma, n) \in \delta \wedge(\mathrm{A} \mapsto \sigma) \in \mathcal{P}\right\}$; and
- $P_{\mathcal{N}}=\left\{\left.\left.\left.\mathrm{A}\right|_{m n} \mapsto \mathrm{~B}\right|_{m o} \mathrm{c}\right|_{o n} \mid(\mathrm{A} \mapsto \mathrm{B} \mathbf{c}) \in \mathcal{P}\right\}$.

Deriving a path from Alice to Eve

$$
\left.\left.\left.\mathrm{A}\right|_{\text {AliceCarol }} \mathrm{A}\right|_{\text {CarolDan }} \mathrm{A}\right|_{\text {DanEve }}
$$

Annotated grammar: Example

Annotated grammar $\left.\mathscr{C}\right|_{\mathfrak{G}}=\left(\left.\mathcal{N}\right|_{\mathfrak{F}}, \Sigma,\left.\mathscr{P}\right|_{\mathfrak{F}}\right)$ with

- $\left.\mathcal{N}\right|_{\mathfrak{F}}=\left\{\left.\mathrm{A}\right|_{m n} \mid m, n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} \cup\left\{\left.\mathrm{A}\right|_{\mathrm{F} n} \mid n \in\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}\right\} ;$ and
- $\left.\mathcal{P}\right|_{\mathfrak{G}}=P_{\Sigma} \cup P_{\mathcal{N}}$ with
- $P_{\Sigma}=\left\{\left.\mathrm{A}\right|_{m n} \mapsto \sigma \mid(m, \sigma, n) \in \delta \wedge(\mathrm{A} \mapsto \sigma) \in \mathcal{P}\right\}$; and
- $P_{\mathcal{N}}=\left\{\left.\left.\left.\mathrm{A}\right|_{m n} \mapsto \mathrm{~B}\right|_{m o} \mathrm{c}\right|_{o n} \mid(\mathrm{A} \mapsto \mathrm{B} \mathbf{c}) \in \mathcal{P}\right\}$.

Deriving a path from Alice to Eve
Alice friendOf Carol friendOf Dan friendOf Eve

Shortest string in a grammar

Algorithm $\operatorname{MinimizeSet}(\mathscr{C}=(\mathcal{N}, \Sigma, \mathcal{P}))$:

```
\(\mathcal{P}^{\prime}\), cost := empty mapping, empty mapping.
new is a min-priority queue.
for all \((\mathrm{A} \mapsto \sigma) \in \mathcal{P}\) do
    if \(\mathrm{A} \notin\) cost then
            \(\operatorname{cost}[\mathrm{A}], \mathcal{P}^{\prime}[\mathrm{A}]:=1,(\mathrm{~A} \mapsto \sigma)\).
            \(\operatorname{add} \mathrm{A}\) to new with priority 1 .
while new \(\neq \emptyset\) do
Take A with minimum priority in new.
Remove A from new.
for all \((\mathbf{c} \mapsto \mathrm{A}\) в \() \in \mathcal{P}\) with \(\boldsymbol{\text { в }} \in \cos t\) do \(\operatorname{PRODUCE}(\mathrm{C} \mapsto \mathrm{A}\) B).
for all \((\mathbf{c} \mapsto \mathrm{B} A) \in \mathcal{P}\) with \(\mathrm{B} \in \operatorname{cost}\) do PRODUCE \((C \mapsto B A)\).
return \(\left\{\mathcal{P}^{\prime}[\mathrm{A}] \mid \mathrm{A} \in \mathcal{P}^{\prime}\right\}\).
```


Algorithm Produce($\mathrm{D} \mapsto \mathrm{E} F$):

 if \(\mathrm{D} \notin\) cost then
 \(\operatorname{cost}[\mathrm{D}]:=\operatorname{cost}[\mathrm{E}]+\operatorname{cost}[\mathrm{F}]\).
 \(\mathcal{P}^{\prime}[\mathrm{D}]:=\mathrm{D} \mapsto \mathrm{EF}\).
 Add D to new with priority \(\operatorname{cost}[\mathrm{E}]+\operatorname{cost}[\mathrm{F}]\).
 else if \(\cos t[\mathrm{D}]>\operatorname{cost}[\mathrm{E}]+\operatorname{cost}[\mathrm{F}]\) then
 \(\cos t[\mathrm{D}]:=\cos t[\mathrm{E}]+\cos t[\mathrm{~F}]\).
 \(\mathcal{P}^{\prime}[\mathrm{D}]:=\mathrm{D} \mapsto \mathrm{EF}\).
 Lower priority of \(\mathrm{D} \in\) new to \(\operatorname{cost}[\mathrm{E}]+\operatorname{cost}[\mathrm{F}]\).

Theorem

MinimizeSet(\mathscr{C}) yields a minimizing set of production rules in

$$
O(|\mathcal{N}|(|\mathcal{N}| \log |\mathcal{N}|+|\mathcal{P}|)) .
$$

Evaluating single-path semantics

$\operatorname{MinimizeSetGG}(\mathscr{C}=(\mathcal{N}, \Sigma, \mathcal{P}), \mathscr{F}=(\mathcal{V}, \Sigma, \delta))$

1. Use MinimizeSet on an annotated grammar.
2. Improvement: derive annotated grammar in-place.
3. Derive shortest paths from the resulting production rules.

Theorem

MinimizeSetGG($\mathscr{C}, \mathfrak{G})$ yields a minimizing set of production rules in

$$
O\left(|\mathcal{N} \| \mathcal{V}|^{2}\left(|\mathcal{N}||\mathcal{V}|^{2} \log \left(|\mathcal{N}||\mathcal{V}|^{2}\right)+|\mathcal{P}|\left(|\mathcal{V}|^{3}+|\delta|\right)\right) .\right.
$$

Cost of the single-path semantics

Grammars: Bounded vs. unbounded

Grammars: Unambiguous vs. ambiguous

Conclusion

> Efficient answering path queries with shortest paths is possible.

Future Work

- Goal-oriented algorithms.
- High-performance and scalable algorithms.
- Optimizations for simple grammars (e.g., LL(1), $\operatorname{LR}(1))$.
https://jhellings.nl/

