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Goal: High-performance resilient data processing

�estions

1. Why?

2. What do we already have?

3. Where can we improve?

4. What new tools do we need?
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We focus on permissioned blockchains

All participants are known.

Rationale: data processing in managed environment

I Support di�erent a�ack models than cryptocurrencies.

I Easier to support low latencies and high throughputs.

I Downside: changing participants is hard.

Many ideas also apply to permissionless blockchains.



4/36

Towards high-performance resilient data processing:

Why?
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Why resilient data processing?

Go beyond assumptions of traditional transaction processing!

Crash recovery Crash resilience Byzantine resilience

2PC

3PC

Paxos

Consensus

Resilience −→

C
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p
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x
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y
−
→

Example

I Provide continuous services during failures.

I Provide services in federated environments.
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Why high-performance?

Support requirements of future applications!

I Ever-growing volumes of data (e.g., sensor networks).

I Ever-growing demands of applications (e.g., machine learning).
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Towards high-performance resilient data processing:

What do we already have?
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Resilient data processing: Fully-replicated ledgers

r1 r2

r3 r4

Cluster

Requests

I All participants (replicas) hold all data.

I All operations by consensus, e.g., via majority-vote.

I All operations executed in a unique ordering as specified by the ledger (journal).
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We have consensus: PBFT, Paxos, PoW, . . .

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.
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What else do we have?

I A lot of theory on consensus: consensus is costly.

I Variations on consensus: Byzantine broadcasts, interactive consistency, . . .

I Tamper-proof ledgers.

hash1 proof1

T1

hash2 proof2

T2

hash3 proof3

T3

. . .

Exact details: depend on consensus, application, a�ack model, . . .

I Many cryptographic tools.

What about high-performance?
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Towards high-performance resilient data processing:

Where can we improve?
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A look at high-performance data processing

Scalability: adding resources =⇒ adding performance.

Full replication: adding resources (replicas) =⇒ less performance!
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Sharding and Geo-scale aware sharding

System

(All Data)

Requests

(All Data)

=⇒

Shard

(European Data)

Shard

(American Data)

(coordination)

Requests

(European Data)

Requests

(Mixed Data)

Requests

(American Data)

Adding shards =⇒ adding throughput (parallel processing), adding storage.
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Role Specialization: Read-only workloads

System

(All Data)

Requests

(Reads, Updates)

=⇒

Storage System

(All Data)

Requests

(Updates)

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Visualization

(u
pdate

s)

Specializing roles =⇒ adding throughput (parallel processing, specialized hardware, . . . ).



15/36

Central ideas for improvement

Reminder

We can make a resilient cluster that manages data: blockchains.

I Sharding: make each shard an independent blockchain.

Requires: reliable communication between blockchains.

Permissionless blockchains: relays, atomic swaps!

I Role Specialization: make the storage system a blockchain.

Requires: reliable read-only updates of the blockchain.

Permissionless blockchains: light clients!

Consensus is of no use here if we want e�iciency.
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Towards high-performance resilient data processing:

What new tools do we need?
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Sharding: Reliable communication between blockchains

r1 r2

r3 r4

Cluster

(All Data)

Requests

(All Data)

=⇒

e1 e2

e3 e4

Cluster

(European Data)

a1 a2

a3 a4

Cluster

(American Data)

Cluster-Sending

(coordination)

Requests

(European Data)

Requests

(Mixed Data)

Requests

(American Data)

The Byzantine cluster-sending problem.
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The Byzantine cluster-sending problem

The problem of sending a value v from a cluster C1 to a cluster C2 such that

I all non-faulty replicas in C2 receive the value v ;

I all non-faulty replicas in C1 confirm that the value v was received; and

I C2 only receives a value v if all non-faulty replicas in C1 agree upon sending v .

Requirements to provide reliable communication between clusters with Byzantine replicas.
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Global communication versus local communication

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1)(f2 + 1) ≈ f1 × f2 messages.

Ping round-trip times (ms) Bandwidth (Mbit/s)

OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977
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Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.
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Lower bounds for cluster-sending: Results

Theorem (Cluster-sending lower bound, simplified)

We need to exchange max(n1,n2) messages to do cluster-sending.

Theorem (Cluster-sending lower bound, crash failures)

Assume n1 ≥ n2 and let

q = (f1 + 1) div nf2; r = (f1 + 1)modnf2.

We need to exchange at least qn2 + r + f2 sgn r ≈ n1 messages to do cluster-sending.
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An optimal cluster-sending algorithm (crash failures)

Protocol for the sending cluster C1, n1 ≥ n2, n1 ≥ σ :
1: Agree on sending v to C2.

2: Choose replicas P ⊆ C1 with |P | = σ .

3: Choose a n2-partition partition(P) of P.

4: for P ∈ partition(P) do
5: Choose replicas Q ⊆ C2 with |Q | = |P |.

6: Choose a bijection b : P → Q.

7: for r1 ∈ P do
8: Send v from r1 to b(r1).

Protocol for the receiving cluster C2:
9: event r2 ∈ C2 receives w from a replica in C1 do

10: Broadcast w to all replicas in C2.

11: event r2 ∈ C2 receives w from a replica in C2 do
12: r2 considers w received.
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An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, σ = 6
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sending v

C1
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Received v
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Cluster-sending: Can we do be�er

Pessimistic

No: these protocols are worst-case optimal.

Cannot do be�er than linear communication in the size of the clusters.

Optimistic—upcoming results

Yes: if we randomly choose sender and receiver, then we o�en do much be�er!

Probabilistic approach: expected-case only constant communication (four steps).
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Role Specialization: Reliable read-only updates of the blockchain

System

(All Data)

Requests

(Reads, Updates)

r1 r2

r3 r4

=⇒

Storage System

(All Data)

Requests

(Updates)

r1 r2

r3 r4

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics
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Visualization

Byzantin
e Learn

in
g

(u
pdate

s)

The Byzantine Learner Problem.
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The Byzantine Learner Problem

The problem of sending a ledger L maintained by a cluster C to a learner l such that:

I the learner l will eventually receive all transactions in L; and

I the learner l will only receive transactions in L.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in C.
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Background: Information dispersal algorithms

Definition

Let v be a value with storage size s = ‖v ‖.

An information dispersal algorithm can encode v in n pieces v
′

such that v can be decoded from every set of n − f such pieces.

Theorem (Rabin 1989)

The IDA algorithm is an optimal information dispersal algorithm:

I Each piece v
′
has size

⌈
‖v ‖

n−f

⌉
.

I The n − f pieces necessary for decoding have a total size of (n − f)
⌈
‖v ‖

(n−f)

⌉
≈ ‖v ‖.
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The delayed-replication algorithm

Idea: C sends a ledger L to learner l

1. Partition the ledger L in sequences S of n transactions.

2. Replica ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica ri ∈ C sends Si with a checksum Ci(S) of S to learner l.

4. Learner l receives at least n − f distinct and valid pieces and decodes S.

Observation (n > 2f)

I Replica ri sends at most B =
⌈
‖S ‖

n−f

⌉
+ c ≤

2‖S ‖

n + 1 + c = O
(
‖S ‖

n + c
)

bytes.

I Learner l receives at most n · B = O (‖S‖ + cn) bytes.
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Communication by the delayed-replication algorithm

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12

Update decision in ledger L −→

No dispersal First 4 updates Second 4 updates

Learned

L[0 : 4]

Learned

L[4 : 8]
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Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Construct a Merkle tree for pieces S0, . . . , S7.
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Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).
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Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].
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Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).
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h6
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(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

If one knows the root: validity of individual pieces can be determined.
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Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner l, replica r ∈ C, and ledger L. The delayed-replication algorithm with

tree checksums guarantees

1. l will learn L;

2. l will receive at most |L| messages with a total size of O (‖L‖ + |L| log n);
3. l will only need at most |L|/n decode steps;

4. r will sent at most |L|/n messages to l of size O

(
‖L ‖+ |L | log n

n

)
.

Adding replicas to cluster C =⇒ less communication per replica!
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Application: Scalable storage for resilient systems

I Clusters typically need a view V on the data to decide whether updates are valid.

I Clusters only need the full ledger L for recovery .

I We can use delayed-replication to reduce the data each replica has to store.

Theorem

The storage cost per replica can be reduced from

O (‖L‖ + ‖V‖) to O

(
‖L‖

n − f
+
|L|

n
log(n) + ‖V‖

)
.
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Towards high-performance resilient data processing:

Concluding remarks
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Conclusion

We need an extensive toolbox!

(permissioned) (permissionless)

I Consensus PBFT, Paxos, . . . PoW, PoS, . . .

I Cross-blockchain communication Cluster-sending Relays, atomic swaps

I Read-only participation Byzantine learning Light clients

High-performance resilient data processing is nearby.
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Ongoing work

Initial results are available

I Cluster-sending: DISC 2019, doi: 10.4230/LIPIcs.DISC.2019.45.

I Byzantine learning: ICDT 2020, doi: 10.4230/LIPIcs.ICDT.2020.17.

I Geo-aware consensus: VLDB 2020, doi: 10.14778/3380750.3380757.

More about us and our work

I Jelle Hellings https://jhellings.nl/.

I
Creativity Unfolded

ExpoLab https://expolab.org/.

I ResilientDB
Security, Privacy Reloaded

https://resilientdb.com/.

https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.ICDT.2020.17
https://doi.org/10.14778/3380750.3380757
https://jhellings.nl/
https://expolab.org/
https://resilientdb.com/
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