
1/36

An In-Depth Look of BFT Consensus in Blockchain:

Challenges and Opportunities

Suyash Gupta Jelle Hellings Sajjad Rahnam Mohammad Sadoghi

Exploratory Systems Lab

Department of Computer Science

University of California, Davis

Davis, CA 95616-8562, USA

Creativity Unfolded
ExpoLab ResilientDB

Security, Privacy Reloaded

2/36

Goal: High-performance resilient data processing

�estions

1. Why?

2. What do we already have?

3. Where can we improve?

4. What new tools do we need?

3/36

We focus on permissioned blockchains

All participants are known.

Rationale: data processing in managed environment

I Support di�erent a�ack models than cryptocurrencies.

I Easier to support low latencies and high throughputs.

I Downside: changing participants is hard.

Many ideas also apply to permissionless blockchains.

4/36

Towards high-performance resilient data processing:

Why?

5/36

Why resilient data processing?

Go beyond assumptions of traditional transaction processing!

Crash recovery Crash resilience Byzantine resilience

2PC

3PC

Paxos

Consensus

Resilience −→

C
o

m
p

l
e
x
i
t
y
−
→

Example

I Provide continuous services during failures.

I Provide services in federated environments.

6/36

Why high-performance?

Support requirements of future applications!

I Ever-growing volumes of data (e.g., sensor networks).

I Ever-growing demands of applications (e.g., machine learning).

7/36

Towards high-performance resilient data processing:

What do we already have?

8/36

Resilient data processing: Fully-replicated ledgers

r1 r2

r3 r4

Cluster

Requests

I All participants (replicas) hold all data.

I All operations by consensus, e.g., via majority-vote.

I All operations executed in a unique ordering as specified by the ledger (journal).

9/36

We have consensus: PBFT, Paxos, PoW, . . .

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

r4

r3

r2

r1

c T

Consensus

T

T

T

T

o

9/36

We have consensus: PBFT, Paxos, PoW, . . .

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

r4

r3

r2

r1

c T

Consensus

T

T

T

T

o

9/36

We have consensus: PBFT, Paxos, PoW, . . .

Termination Each non-faulty replica decides on a transaction.

Non-divergence Non-faulty replicas decide on the same transaction.

Validity Every decided-on transaction is a client request.

Response Clients learn about the outcome of their requests.

Service Every client will be able to request transactions.

r4

r3

r2

r1

c T

Consensus

T

T

T

T

o

10/36

What else do we have?

I A lot of theory on consensus: consensus is costly.

I Variations on consensus: Byzantine broadcasts, interactive consistency, . . .

I Tamper-proof ledgers.

hash1 proof1

T1

hash2 proof2

T2

hash3 proof3

T3

. . .

Exact details: depend on consensus, application, a�ack model, . . .

I Many cryptographic tools.

What about high-performance?

10/36

What else do we have?

I A lot of theory on consensus: consensus is costly.

I Variations on consensus: Byzantine broadcasts, interactive consistency, . . .

I Tamper-proof ledgers.

hash1 proof1

T1

hash2 proof2

T2

hash3 proof3

T3

. . .

Exact details: depend on consensus, application, a�ack model, . . .

I Many cryptographic tools.

What about high-performance?

11/36

Towards high-performance resilient data processing:

Where can we improve?

12/36

A look at high-performance data processing

Scalability: adding resources =⇒ adding performance.

Full replication: adding resources (replicas) =⇒ less performance!

13/36

Sharding and Geo-scale aware sharding

System

(All Data)

Requests

(All Data)

=⇒

Shard

(European Data)

Shard

(American Data)

(coordination)

Requests

(European Data)

Requests

(Mixed Data)

Requests

(American Data)

Adding shards =⇒ adding throughput (parallel processing), adding storage.

14/36

Role Specialization: Read-only workloads

System

(All Data)

Requests

(Reads, Updates)

=⇒

Storage System

(All Data)

Requests

(Updates)

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Visualization

(u
pdate

s)

Specializing roles =⇒ adding throughput (parallel processing, specialized hardware, . . .).

15/36

Central ideas for improvement

Reminder

We can make a resilient cluster that manages data: blockchains.

I Sharding: make each shard an independent blockchain.

Requires: reliable communication between blockchains.

Permissionless blockchains: relays, atomic swaps!

I Role Specialization: make the storage system a blockchain.

Requires: reliable read-only updates of the blockchain.

Permissionless blockchains: light clients!

Consensus is of no use here if we want e�iciency.

16/36

Towards high-performance resilient data processing:

What new tools do we need?

17/36

Sharding: Reliable communication between blockchains

r1 r2

r3 r4

Cluster

(All Data)

Requests

(All Data)

=⇒

e1 e2

e3 e4

Cluster

(European Data)

a1 a2

a3 a4

Cluster

(American Data)

Cluster-Sending

(coordination)

Requests

(European Data)

Requests

(Mixed Data)

Requests

(American Data)

The Byzantine cluster-sending problem.

18/36

The Byzantine cluster-sending problem

The problem of sending a value v from a cluster C1 to a cluster C2 such that

I all non-faulty replicas in C2 receive the value v ;

I all non-faulty replicas in C1 confirm that the value v was received; and

I C2 only receives a value v if all non-faulty replicas in C1 agree upon sending v .

Requirements to provide reliable communication between clusters with Byzantine replicas.

19/36

Global communication versus local communication

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1)(f2 + 1) ≈ f1 × f2 messages.

Ping round-trip times (ms) Bandwidth (Mbit/s)

OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977

19/36

Global communication versus local communication

Straightforward cluster-sending solution (crash failures)

Pair-wise broadcasting with (f1 + 1)(f2 + 1) ≈ f1 × f2 messages.

Ping round-trip times (ms) Bandwidth (Mbit/s)

OR IA Mont. BE TW Syd. OR IA Mont. BE TW Syd.

Oregon ≤ 1 38 65 136 118 161 7998 669 371 194 188 136

Iowa ≤ 1 33 98 153 172 10004 752 243 144 120

Montreal ≤ 1 82 186 202 7977 283 111 102

Belgium ≤ 1 252 270 9728 79 66

Taiwan ≤ 1 137 7998 160

Sydney ≤ 1 7977

20/36

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

20/36

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

20/36

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

20/36

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

20/36

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

20/36

Lower bounds for cluster-sending: Example

n1 = 15 f1 = 7

n2 = 5 f2 = 2

Claim (crash failures)

Any correct protocol needs to send at least 14 messages.

21/36

Lower bounds for cluster-sending: Results

Theorem (Cluster-sending lower bound, simplified)

We need to exchange max(n1,n2) messages to do cluster-sending.

Theorem (Cluster-sending lower bound, crash failures)

Assume n1 ≥ n2 and let

q = (f1 + 1) div nf2; r = (f1 + 1)modnf2.

We need to exchange at least qn2 + r + f2 sgn r ≈ n1 messages to do cluster-sending.

22/36

An optimal cluster-sending algorithm (crash failures)

Protocol for the sending cluster C1, n1 ≥ n2, n1 ≥ σ :
1: Agree on sending v to C2.

2: Choose replicas P ⊆ C1 with |P | = σ .

3: Choose a n2-partition partition(P) of P.

4: for P ∈ partition(P) do
5: Choose replicas Q ⊆ C2 with |Q | = |P |.

6: Choose a bijection b : P → Q.

7: for r1 ∈ P do
8: Send v from r1 to b(r1).

Protocol for the receiving cluster C2:
9: event r2 ∈ C2 receives w from a replica in C1 do

10: Broadcast w to all replicas in C2.

11: event r2 ∈ C2 receives w from a replica in C2 do
12: r2 considers w received.

23/36

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, σ = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2

Received v

23/36

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, σ = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2

Received v

23/36

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, σ = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2

Received v

23/36

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, σ = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2

Received v

23/36

An optimal cluster-sending algorithm—visualized

Crash failures, n1 = 7, n2 = 4, f1 = 3, f2 = 1, σ = 6

r1,7

r1,6

r1,5

r1,4

r1,3

r1,2

r1,1

r2,4

r2,3

r2,2

r2,1

Decide on

sending v

C1

C2 Received v

24/36

Cluster-sending: Can we do be�er

Pessimistic

No: these protocols are worst-case optimal.

Cannot do be�er than linear communication in the size of the clusters.

Optimistic—upcoming results

Yes: if we randomly choose sender and receiver, then we o�en do much be�er!

Probabilistic approach: expected-case only constant communication (four steps).

24/36

Cluster-sending: Can we do be�er

Pessimistic

No: these protocols are worst-case optimal.

Cannot do be�er than linear communication in the size of the clusters.

Optimistic—upcoming results

Yes: if we randomly choose sender and receiver, then we o�en do much be�er!

Probabilistic approach: expected-case only constant communication (four steps).

25/36

Role Specialization: Reliable read-only updates of the blockchain

System

(All Data)

Requests

(Reads, Updates)

r1 r2

r3 r4

=⇒

Storage System

(All Data)

Requests

(Updates)

r1 r2

r3 r4

Compute Systems

(Copy of Relevant Data)

(Read-only Workloads)

Analytics

Machine

Learning

Visualization

Byzantin
e Learn

in
g

(u
pdate

s)

The Byzantine Learner Problem.

26/36

The Byzantine Learner Problem

The problem of sending a ledger L maintained by a cluster C to a learner l such that:

I the learner l will eventually receive all transactions in L; and

I the learner l will only receive transactions in L.

Practical requirements

I Minimizing overall communication.

I Load balancing among all replicas in C.

27/36

Background: Information dispersal algorithms

Definition

Let v be a value with storage size s = ‖v ‖.

An information dispersal algorithm can encode v in n pieces v
′

such that v can be decoded from every set of n − f such pieces.

Theorem (Rabin 1989)

The IDA algorithm is an optimal information dispersal algorithm:

I Each piece v
′
has size

⌈
‖v ‖

n−f

⌉
.

I The n − f pieces necessary for decoding have a total size of (n − f)
⌈
‖v ‖

(n−f)

⌉
≈ ‖v ‖.

28/36

The delayed-replication algorithm

Idea: C sends a ledger L to learner l

1. Partition the ledger L in sequences S of n transactions.

2. Replica ri ∈ C encodes S into the i-th IDA piece Si .

3. Replica ri ∈ C sends Si with a checksum Ci(S) of S to learner l.

4. Learner l receives at least n − f distinct and valid pieces and decodes S.

Observation (n > 2f)

I Replica ri sends at most B =
⌈
‖S ‖

n−f

⌉
+ c ≤

2‖S ‖

n + 1 + c = O
(
‖S ‖

n + c
)

bytes.

I Learner l receives at most n · B = O (‖S‖ + cn) bytes.

29/36

Communication by the delayed-replication algorithm

b

r2

r1

r0

l

1 2 3 4 5 6 7 8 9 10 11 12

Update decision in ledger L −→

No dispersal First 4 updates Second 4 updates

Learned

L[0 : 4]

Learned

L[4 : 8]

30/36

Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Construct a Merkle tree for pieces S0, . . . , S7.

30/36

Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Determine the path from root to S5.

30/36

Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

Select root and neighbors: C5(S) = [h4, h67, h0123, h01234567].

30/36

Checksums: Use Merkle-trees to construct checksums

Consider 8 replicas and a sequence S.

We construct the checksum C5(S) of S (used by r5).

h0

(S0)

h1

(S1)

h2

(S2)

h3

(S3)

h4

(S4)

h5

(S5)

h6

(S6)

h7

(S7)

h01 h23 h45 h67

h0123 h4567

h01234567

If one knows the root: validity of individual pieces can be determined.

31/36

Delayed-replication: Main result (n > 2f)

Theorem

Consider the learner l, replica r ∈ C, and ledger L. The delayed-replication algorithm with

tree checksums guarantees

1. l will learn L;

2. l will receive at most |L| messages with a total size of O (‖L‖ + |L| log n);
3. l will only need at most |L|/n decode steps;

4. r will sent at most |L|/n messages to l of size O

(
‖L ‖+ |L | log n

n

)
.

Adding replicas to cluster C =⇒ less communication per replica!

32/36

Application: Scalable storage for resilient systems

I Clusters typically need a view V on the data to decide whether updates are valid.

I Clusters only need the full ledger L for recovery .

I We can use delayed-replication to reduce the data each replica has to store.

Theorem

The storage cost per replica can be reduced from

O (‖L‖ + ‖V‖) to O

(
‖L‖

n − f
+
|L|

n
log(n) + ‖V‖

)
.

33/36

Towards high-performance resilient data processing:

Concluding remarks

34/36

Conclusion

We need an extensive toolbox!

(permissioned) (permissionless)

I Consensus PBFT, Paxos, . . . PoW, PoS, . . .

I Cross-blockchain communication Cluster-sending Relays, atomic swaps

I Read-only participation Byzantine learning Light clients

High-performance resilient data processing is nearby.

35/36

Ongoing work

Initial results are available

I Cluster-sending: DISC 2019, doi: 10.4230/LIPIcs.DISC.2019.45.

I Byzantine learning: ICDT 2020, doi: 10.4230/LIPIcs.ICDT.2020.17.

I Geo-aware consensus: VLDB 2020, doi: 10.14778/3380750.3380757.

More about us and our work

I Jelle Hellings https://jhellings.nl/.

I
Creativity Unfolded

ExpoLab https://expolab.org/.

I ResilientDB
Security, Privacy Reloaded

https://resilientdb.com/.

https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.ICDT.2020.17
https://doi.org/10.14778/3380750.3380757
https://jhellings.nl/
https://expolab.org/
https://resilientdb.com/

	Why?
	What do we already have?
	Where can we improve?
	What new tools do we need?
	Concluding remarks

